Filling in the gaps:

Imputing exoplanet properties with machine learning

Elizabeth Tasker

Nicholas Guttenberg

Matthieu Laneuville

Tasker, Laneuville & Guttenberg, AJ 2020. ArXiv: 1911.11035

4000+ exoplanets

Statistics

Understanding formation

... and habitability

BUT....

96% exoplanets found by either the radial velocity or transit technique

Give different planet properties.

https://exoplanetarchive.ipac.caltech.edu

- Transit
- Radial velocity
 - Other

Radial velocity or Doppler wobble

Star "wobbles"due to the planet's gravity.

Periodic shift in wavelength

Gives a <u>minimum mass</u> for the planet

m sin(i) = mass

m sin (i) << mass

Transit

Dip in light as planet crosses our line of sight to the star

 $p_T = \frac{R_*}{a}$

Earth analogue

Low probability far from star.

Mass

Detection by 2 methods required

(often impossible)

Planet characterisation needs mass & radius.

Proxima Centauri b (Nearest star)

 $\overline{M\sin(i)} = \overline{1.27\,\mathrm{M}_\oplus}$ (min. mass)

Period = 11.2 days

Habitable Zone

 N_2

 H_2

Earth could support liquid water (assumes our surface pressure & atmosphere)

Proxima Centauri b

SURFACE IMAGING OF PROXIMA B AND OTHER EXOPLANETS: TOPOGRAPHY, BIOSIGNATURES, AND ARTIFICIAL MEGA-STRUCTURES

> SEARCHING FOR THE TRANSIT OF THE EARTH-MASS EXOPLANET PROXIMA CENTAURI B IN ANTARCTICA: PRELIMINARY RESULT

REDUCED DIVERSITY OF LIFE AROUND PROXIMA CENTAURI AND TRAPPIST-1

Exploring the climate of Proxima B with the Met Office Unified Model

HABITABLE CLIMATE SCENARIOS FOR PROXIMA CENTAURI B WITH A DYNAMIC OCEAN

DETECTING PROXIMA B'S ATMOSPHERE WITH JWST TARGETING CO₂ AT 15 MICRON USING A HIGH-PASS SPECTRAL FILTERING TECHNIQUE Proxima Centauri b : $M \sin(i) = 1.27 \,\mathrm{M}_{\oplus}$

 $M\sin(i=90^\circ)=M$

 $M\sin(i < 90^\circ) < M$

(Transit detection)

Period = 130 days

Kepler-186f

 $R = 1.1 R_{\oplus}$

(Transit detection)

Period = 130 days

Degenerate compositions gives x10 spread in mass

 $R = 1.1 R_{\oplus}$ $0.4 < M < 3.5 M_{\oplus}$

Lopez-Morales et al, ApJ 152:204, 2016

4000+ exoplanet discoveries

NASA EXOPLANET ARCHIVE

		bout lie	Data	Тоо	ole Su	nnort	1.0							
(111)			Data	100		ppon		Aim						
囲	Select Columns	H Download	Table N Plot la	ible	>> View Docume	entation Use	r Prete	rences						
			Confirmed P	lanets										
	Planet Name	Number of Planets in System	Orbital Period [d	🔀 iays]	Eccentricity	Inclination	🔀 (deg)	Planet Mass or M*sin(i) [Jupiter mass]	Planet Radius [Jupiter radii]	Planet Density [g/cm**3]	Equilibrium Temperature [K]	Stellar Mass [Solar mass]	Stellar Radius [Solar radii]	Stellar Age [Gyr]
	2	?		2		1	?	?	2	?	2	?		
	HD 141399 c	4	201.99±0.08		0.048±0.009			1.33±0.08				1.07±0.08		
\checkmark	HD 141399 d	4	1069.8±6.7		0.074±0.025			1.18±0.08				1.07±0.08		
~	HD 141399 e	4	5000 ⁺⁵⁶⁰ -2000		0.26±0.22			0.66±0.10				1.07±0.08		
~	HD 80606 b	1	111.43670±0.00040		0.93±0.00	89.29±0.02	ş	4.38±0.74	1.07±0.03			1.15±0.27	1.04±0.02	
~	HD 68988 b	1	6.27711±0.00021		0.12±0.01	-	-	1.97±0.10				1.28±0.09	1.19±0.02	
\checkmark	Kepler-1428 b	1	10.67607169±6.093	e-05					0.146 +0.012 -0.009			1.280 +0.032 -0.029	1.360 +0.096 -0.078	2.040 +0.576 -0.619
	HD 33283 b	1	18.1991±0.0017		0.399±0.056			0.329±0.071				1.38±0.24	1.97±0.13	3.63±0.48
	Kepler-1000 b	1	120.0181272±0.000	3628					0.425 +0.030 -0.028			1.40±0.04	1.510 +0.080	1.26 +0.33
	Kepler-28 b	2	5.9123					<1.51	0.321			0.75	0.70	
	Kepler-28 c	2	8.9858					<1.36	0.303			0.75	0.70	
~	Kepler-94 b	2	2.50806					0.034±0.004	0.313±0.013	1.45±0.26		0.81±0.06	0.76±0.03	1.41
\checkmark	Kepler-94 c	2	820.3±3					9.836±0.629				0.81±0.06	0.76±0.03	1.41
\checkmark	K2-24 b	2	20.88977 +0.00034		0.06±0.01			0.0598 +0.0069	0.48±0.02	0.64 +0.12		1.07±0.06	1.16±0.04	
	K2-24 c	2	42.3391±0.0012		<0.07			0.0485 +0.0060	0.67±0.03	0.20 +0.04 -0.03		1.07±0.06	1.16±0.04	
	Kepler-526 b	1	5.458498316±9.07e	-06					0.178 +0.014 -0.015			1.150 +0.037	1.140 +0.068	2.140 +1.310
	K2-238 b	1	3.20466±0.00003		0	84.5 +1.8		0.86 +0.13	1.30 +0.15 -0.14	0.56 +0.25	1587 +75 -76	1.19±0.08	1.59±0.16	5.63 +1.05
	Kepler-794 b	1	11.13125132±3.571	e-05					0.188 +0.046 -0.030			1.190 +0.107	1.380 +0.339 -0.219	4.07 +0.70
	Kepler-6 b	1	3.2346996±0.00000	04		88.93 +0.19		0.668 +0.038	1.304 +0.018	0.40 +0.06	1460±10	1.209 +0.044	1.391 +0.017 -0.034	
~	HD 11506 b	2	1622.1±2.1		0.3743±0.0053			4.83±0.52				1.24±0.18	1.34±0.05	2.30±0.58
	HD 11506 c	2	223.41±0.32		0.193±0.038			0.408±0.057				1.24±0.18	1.34±0.05	2.30±0.58
\checkmark	HD 202206 c	1	1260±11		0.22±0.03	7.7±1.1		17.9 +2.9				1.27±0.12	1.03±0.02	
	WASP-153 b	1	3.332609±0.000002		<0.009	84.1±0.7		0.39±0.02	1.55 +0.10	0.15±0.03	1700±40	1.336±0.086	1.73 +0.10	4.0±0.8
	HATS-60 b	1	3.560829±0.000032		<0.191	86.28±0.35		0.662±0.055	1.153±0.053	0.537 +0.100	1528±11	1.097 +0.010	1.460±0.024	7.55 +0.70
	HATS-67 b	1	1.6091788±0.00000	40	<0.057	79.03±0.26		1.45±0.12	1.685±0.047	0.374±0.047	2193±22	1.435±0.021	1.441±0.026	0.51±0.24
	HAT-P-44 b	2	4.301219±0.000019	1	0.044±0.052	89.1±0.4		0.352±0.029	1.242 +0.106	0.23±0.04	1108 +51 -32	0.942±0.041	0.949 +0.080 -0.037	7.5±3.6
~	HAT-P-44 c	2	872.2±1.7		0.494±0.081			4.0 +1.4 -0.8				0.942±0.041	0.949 +0.080	7.5±3.6
~	HATS-14 b	1	2.7667641±0.00000	27	<0.142	88.83±0.66		1.071±0.070	1.039 +0.032	1.191 +0.098	1276±20	0.967±0.024	0.933 +0.023	4.9±1.7
	Kepler-407 b	2	0.669310					<0.010	0.095±0.002			1.00±0.06	1.01±0.07	7.47
	Kepler-407 c	2	3000±500					12.6±6.3				1.00±0.06	1.01±0.07	7.47

Many potential planet properties

... sparse table

https://exoplanetarchive.ipac.caltech.edu

When telescopes cannot help...

What can we do?

NN	ASA EXOF	EXOP	LANET A		Ē							
ł	lome A	About Us	Data Too	ls Sup	port Lo	gin						
	Select Columns	Download	d Table 💟 Plot Table	♡ View Documen	tation User Prefe	rences						
			Confirmed Planets									
	A Z 🛛 Planet Name	Number of Planets in System	이 기 전 Orbital Period [days]	Eccentricity	최 Inclination [deg]	Planet Mass or M*sin(i) [Jupiter mass]	Planet Radius [Jupiter radii]	Planet Density [g/cm**3]	Equilibrium Temperature [K]	Stellar Mass [Solar mass]	Stellar Radius [Solar radii]	Stellar Age [Gyr]
	2	2	2	2	2	2	2	2		2		1 2
~	HD 141399 c	4	201.99±0.08	0.048±0.009		1.33±0.08				1.07±0.08		
	HD 141399 d	4	1069.8±6.7	0.074±0.025		1.18±0.08				1.07±0.08		
~	HD 141399 e	4	5000 +560	0.26±0.22		0.66±0.10				1.07±0.08		
	HD 80606 b	1	111.43670±0.00040	0.93±0.00	89.29±0.02	4.38±0.74	1.07±0.03			1.15±0.27	1.04±0.02	
	HD 68988 b	1	6.27711±0.00021	0.12±0.01		1.97±0.10				1.28±0.09	1.19±0.02	-
	Kepler-1428 b	1	10.67607169±6.093e-05				0.146 +0.012			1.280 +0.032	1.360 +0.096	2.040 +0.576
	HD 33283 b	1	18.1991±0.0017	0.399±0.056		0.329±0.071				1.38±0.24	1.97±0.13	3.63±0.48
	Kepler-1000 b	1	120.0181272±0.0003628				0.425 +0.030			1.40±0.04	1.510 +0.080	1.26 +0.33
~	Kepler-28 b	2	5.9123			<1.51	0.321			0.75	0.70	-0.10
	Kepler-28 c	2	8.9858			<1.36	0.303			0.75	0.70	-
~	Kepler-94 b	2	2.50806			0.034±0.004	0.313±0.013	1.45±0.26		0.81±0.06	0.76±0.03	1.41
V	Kepler-94 c	2	820.3±3			9.836±0.629				0.81±0.06	0.76±0.03	1.41
	K2-24 b	2	20.88977 +0.00034	0.06±0.01		0.0598 +0.0069	0.48±0.02	0.64 +0.12		1.07±0.06	1.16±0.04	1.040
	K2-24 c	2	42.3391±0.0012	<0.07		0.0485 +0.0060	0.67±0.03	0.20 +0.04		1.07±0.06	1.16+0.04	
V	Kenler-526 b	1	5 458498316+9 07e-06			-0.0067	0.178 +0.014			1 150 +0.037	1 140 +0.068	2 140 +1.310
	K2-238 b	1	3 20466+0.00003	0	84.5 1.8	0.86 *0.13	1.30 +0.15	0.56 +0.25	1587 *75	1.19+0.08	1.59+0.16	5.63 +1.05
V	Kenler-794 b	1	11 13125132+3 571e-05		1.5	-0.12	0 188 +0.046	-0.16		1 190 +0.107	1.380 +0.339	4 07 +0.70
V	Kenler-6 h	1	3 2346996+0 0000004		88.93 +0.19	0.668 +0.038	1 304 +0.018	0.40 +0.06	1460+10	1 209 +0.044	1 391 +0.017	-1.06
V	HD 11506 b	2	1622 1+2 1	0 3743+0 0053	0.17	4 83+0 52		-0.04		1 24+0 18	1 34+0 05	2 30+0 58
~	HD 11506 c	2	223 41+0 32	0 193+0 038		0.408+0.057				1 24+0 18	1.34+0.05	2 30+0 58
V	HD 202206 c	1	1260+11	0 22+0 03	7 7+1 1	17.9 +2.9				1 27+0 12	1.03+0.02	2.0010.00
	WASP-153 h	1	3 332609+0 000002	<0.009	84 140 7	0 39+0 02	1 55 +0.10	0 15+0 03	1700+40	1 336+0 086	1 73 +0.10	4.0+0.8
V	HATS 60 b		3 560820+0 00002	<0.101	96 2840 25	0.66240.055	1 153+0 053	0.527 +0.100	1529+11	1.007 +0.010	1 460+0 024	7 55 +0.70
	HATE 67 h		1 6001788+0 0000040	<0.057	70.0240.35	1 45+0 12	1.10010.000	0.331 -0.070	2102+22	1.435+0.031	1.40020.024	0.55 -0.30
	HAT D 44 b	2	1.009170020.0000040	0.007	19.0310.20	1.4010.12	1.00010.047	0.37420.047	2190122	1.430±0.021	1.44120.026	0.5120.24
	mA1-P-44 D	2	4.30121920.000019	0.044±0.052	09.120.4	0.352±0.029	1.242 -0.051	0.2310.04	1100 .32	0.942±0.041	0.949 -0.037	7.023.0
~	MAI-P-44 C	2	8/2.2±1./	0.494±0.081		4.0 _0.8	+0.032	+0.098		0.942±0.041	0.949 -0.037	7.5±3.6
~	MAIS-14 D	1	2.700/641±0.0000027	<0.142	66.63±0.66	1.0/1±0.0/0	1.039 _0.022	1.191 -0.140	12/6±20	0.967±0.024	0.933 .0.015	4.9±1.7
M	Kepler-407 b	2	0.669310			<0.010	0.095±0.002			1.00±0.06	1.01±0.07	7.47
\sim	Kepler-407 c	2	3000±500			12.6±6.3				1.00±0.06	1.01±0.07	7.47

Can we impute missing values, based on known properties?

But...

Multi-dimensional data

Incomplete planet formation theories

neural network: planet property generator

NEURAL NETWORK

Type of machine learning, inspired by the brain.

Given examples, a neural network finds trends between variables.

Excellent for multi-dimensional data

W1 = W2 = W3

INPUT FEATURES WEIGHTS ACTIVATION RESULT

OPTIMISER

W1 = W2 = W3

INPUT FEATURES WEIGHTS ACTIVATION RESULT

OPTIMISER

W1 < W2 < W3

You can choose the <u>number</u> of features (nodes)

You can choose the <u>number</u> of features (nodes)

But the network selects <u>what</u> each node represents and its weight

Can a neural network find the relation between orbital period and equilibrium temperature?

blue = data orange = network prediction

But how do we train the network if we don't know the right answer?

Feed the network a set of properties for many planets

Network finds a statistical representation of those properties

PLANET

NEURAL NETWORK

6 parameter density space

PLANET

NEURAL NETWORK

Network can create a "new" planets whose properties fit the statistical distribution.

NEURAL NETWORK

#ALTPLANET

- (.)

NEURAL NETWORK

DETAILS

(feel free to sleep for the next few slides)

This will all end in tears. I just know it.

Small print

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

TRAINING

Network adjusts features / weights to find a distribution that fits the training set.

Small print

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

TRAINING

Network adjusts features / weights to find a distribution that fits the training set.

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

TRAINING

Network adjusts features / weights to find a distribution that fits the training set.

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

New planet (or planet property) accepted based on the energy difference from adding the planet to the distribution: $P = e^{E_{\text{orig}} - E_{\text{new}}}$

Energy of trained system

Generated planet

Energy of system + generated planet

Reject

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

New planet (or planet property) accepted based on the energy difference from adding the planet to the distribution: $P = e^{E_{\text{orig}} - E_{\text{new}}}$

Energy of trained system

Generated planet

Energy of system + generated planet

Accept

Require complete property set for a group of planets for network training: radius, mass, period, equilibrium temperature, number of planets in system, stellar mass

Modified boltzmann machine

Create statistical distribution by representing each planet's properties as an energy.

New planet (or planet property) accepted based on the energy difference from adding the planet to the distribution: $P = e^{E_{\text{orig}} - E_{\text{new}}}$

Property distribution Create multiple (1000) values per planet and take the mean.

Assume you found a transiting planet (Radius, no minimum mass)

Give the (trained) neural network 5 measured properties Outputs a distribution of possible mass values

Assume you found a RV planet (minimum mass, no radius)

Give the (trained) neural network 4 measured properties Outputs distribution of possible mass & radius values

RESULTS (wake up!)

Incredible... it's even worse than I thought it would be.

(pretend we only know m sin(i) and look at network generated masses)

(secretly do know the mass of these planets)

What can we compare this to?

Switch network distribution for the distribution of known planet masses

Μ

What can we compare this to?

What if we didn't use the network, and just compared m sin(i) to the distribution of known planet masses?

Μ

$$\epsilon = \ln(M_{\rm obs}/M_{\rm imputed})$$

Network error = 0.39 Obs. error = 0.41

On average, network finds a planet mass ~1.5 x true mass

Where do we do well?

WASP-68b has a very low error

What kind of planet is this?

Best Worlds

Inflated hot Jupiter $M = 1.1M_{Jup}$ $R = 1.32R_{Jup}$ P = 5 days

How about the bad planets?

K2-66 b has a high error

What's its problem?!

Bad Worlds

Danger!

If your m sin(i) value lies in the low probability tail of the network distribution, it **may** indicate a high error.

Bad Worlds

Hot sub-Neptune

 $M = 21.3M_{\oplus} \qquad R = 2.5R_{\oplus}$

 $P = 5 \, \text{days}$ "Photoevaporation dessert"

Curious worlds

Super-size hot Jupiter

 $M = 2.5 M_{\rm Jup} \qquad R = 1.1 R_{\rm Jup}$

P = 8 days

2 statistically consistent options

Proxima Centauri-b

Mass [M $_\oplus$]

(pretend we only know radius and look at network generated masses)

How does this compare with other methods?

MR Forecaster (Chen & Kipping, 2017)

MR Forecaster (Chen & Kipping, 2017)

Weiss & Marcy, 2014 (Empirical < 4) $R_P < 1.5R_{\oplus}$ $\rho_P = 2.43 + 3.39 \left(\frac{R_P}{R_{\oplus}}\right) \text{gcm}^{-3}$ $1.5 \le R_P/R_{\oplus} < 4$ $\frac{M_P}{M_{\oplus}} = 2.69 \left(\frac{R_P}{R_{\oplus}}\right)^{0.93}$

Errors:

Network = 0.98

Forecaster = 1.6

WM2014 (< 4 RE) = 1.02

On average, network finds a planet mass ~2.7 x true mass

But why more scatter?

How about the bad planets?

Kepler-145 b has a high error

Why?!

Bad Worlds

Unusually large rocky planet $M = 37.1 M_{\oplus}$ $R = 2.65 R_{\oplus}$ $\rho = 11.0 \,\text{g/cm}^3$

Network thinks this planet should have a thick atmosphere (and lower mass)

How about the REALLY bad planets?

Kepler-415b

2MASS J2140+16A b

 $M = 120 M_{\oplus}$ $R = 1.2 R_{\oplus}$ $\rho = 373.1 \text{ g/cm}^3$

$M = 120^{+102.1}_{-87.4} M_{\oplus}$

Network estimate: $M = 1.7 M_{\oplus}$

Neural networks can identify trends between planet properties

... to interpolate between known data and estimate missing values

Neural networks can identify trends between planet properties

... to interpolate between known data and estimate missing values Best performance in densely populated parameter space

Neural networks can identify trends between planet properties

... to interpolate between known data and estimate missing values

Best performance in densely populated parameter space

Distribution contains important information.

All new data will improve the method

Neural networks can identify trends between planet properties

... to interpolate between known data and estimate missing values

Best performance in densely populated parameter space

Distribution contains important information.

Outreach: https://www.youtube.com/watch?v=cQygpmYwKw4

... or a world largely composed of ices or ocean.