CHARACTERIZING THE ATMOSPHERES AND CLIMATES OF NEARBY EARTH-SIZED, TEMPERATE EXOPLANETS

Martin Turbet

And C. Lovis, E. Bolmont, D. Ehrenreich, G. Chaverot, T. Fauchez, M. Lefèvre, S. Quanz, J. Hagelberg, D. Mondelain, J-M Hartmann, H. Tran, A. Campargue, O. Pirali, D. Abbot, E. Kite, J. Leconte, F. Forget, F. Selsis, E. Millour, T. Kodama, E. Wolf

Marie Curie postdoctoral fellow and TGF fellow at the <u>Geneva Observatory</u> (CH)

Manchu & D. Fossé

CUMULATIVE DETECTION OF EXOPLANETS PER YEAR

year

CUMULATIVE DETECTION OF SMALL, TEMPERATE EXOPLANETS PER YEAR

PROXIMA CENTAURI b - our closest neighbour

ESO Artist view

Anglada-Escudé et al. 2016, Nature

TRAPPIST-1 – host of 7 wonders

NASA JPL Artist view

M. Gillon et al. 2016-17, Nature R. Luger et al. 2017, Nature Astronomy

TRAPPIST-1

1.6

#1 Tidal locking / Synchronous rotation

May not be accurate if:

- <u>Strong atmospheric tides</u>

(Leconte et al. 2015, Science)

- High eccentricity

(Makarov 2012, Ribas et al. 2016, A&A)

- <u>Strong planet-planet interactions</u> (*Vinson et al. 2019*)

#2 Runaway greenhouse during the Pre Main Sequence phase of the host star

#3 Large X/EUV-driven atmospheric escape

VOLATILE-POOR PLANET ENDS UP COMPLETELY DRY AIRLESS PLANET

LOW MASS STAR

SUN-LIKE STAR

> *Tian & Ida 2015, Nature Geoscience*

LOW MASS STAR

SUN-LIKE STAR

> *Tian & Ida 2015, Nature Geoscience*

Volatile-rich, (e.g. water-rich) planet

Volatile-rich, (e.g. water-rich) planet

Dry, airless planet replenished with volatile delivery and volcanic outgassing after PMS

Volatile-rich, (e.g. water-rich) planet

Dry, airless planet replenished with volatile delivery and volcanic outgassing after PMS

Known unknowns (H₂-rich planet? He-rich planet? Etc.) and unknown unknowns

1) Dynamical Core to compute large scale atmospheric motions and transport

> 3) Subgrid-scale dynamics: Turbulence and convection in the boundary layer

THE LMD GENERIC GCM

6) Photochemical hazes and lifted aerosols

2) Radiative transfer through gas and aerosols

5) Volatile condensation on the surface and in the atmosphere

4) Surface and subsurface thermal balance

Example of a 3D Global Climate Model simulation of a tidallylocked terrestrial **aquaplanet** orbiting around a low mass star

Turbet et al. 2016, 2018, A&A

Example of a 3D Global Climate Model simulation of a tidallylocked terrestrial **land planet** orbiting around a low mass star

Turbet et al. 2016, 2018, A&A

Volatile-rich, (e.g. water-rich) planet

Dry, airless planet replenished with volatile delivery and volcanic outgassing after PMS

Known unknowns (H₂-rich planet? He-rich planet? Etc.) and unknown unknowns

POSSIBLE CLIMATES OF A« TYPICAL » TEMPERATE PLANET AROUND M-STAR

(here diagrams are for Proxima b / TRAPPIST-1e)

SYNCHRONOUS ROTATION (Proxima b / TRAPPIST-1e)

Turbet et al. 2016, A&A Turbet et al. 2018, A&A

GREENHOUSE GAS CONTENT

WATER CONTENT

<u>Recovering</u> Leconte et al. 2013, A&A Menou 2015, EPSL

WATER CONTENT

<u>Recovering</u> Leconte et al. 2013, A&A Menou 2015, EPSL

Artist's view (Credit: Beau. The Consortium)

SURFACE TEMPERATURES OF PROXIMA B

SYNCHRONOUS ROTATION (Proxima b / TRAPPIST-1e)

Turbet et al. 2016, A&A Turbet et al. 2018, A&A

GREENHOUSE GAS CONTENT

Trappist Habitable Atmospheres Intercomparison (THAI) project

SYNCHRONOUS ROTATION (Proxima b / TRAPPIST-1e)

Turbet et al. 2016, A&A Turbet et al. 2018, A&A

GREENHOUSE GAS CONTENT

HRHC TECHNIQUE

THERMAL PHASE CURVE AND SECONDARY ECLIPSE

Turbet et al. 2020b, In revision for A&A (available on arXiv)

Turbet et al. 2020b, In revision for A&A (available on arXiv)

TRANSIT SPECTROSCOPY

NASA GSFC

TRANSMISSION SPECTRA OF TRAPPIST-1 PLANETS

Turbet et al. 2020b, submitted to Space Science Reviews

Based on the work of De Wit et al. 2016, 2018 Gillon et al. 2017 Delrez et al. 2018 Ducrot et al. 2018, 2020

TRAPPIST-1 planets

James Webb Space Telescope

1331 - Transit Spectroscopy of TRAPPIST-1e

Cycle: 1, Proposal Category: GTO

INVESTIGATORS

Name	Institution	E-Mail
Prof. Nikole Lewis (PI)	Cornell University	nikole.lewis@cornell.edu
Dr. Matt Mountain (CoI)	Space Telescope Science Institute	mmountain@stsci.edu
Dr. Mark Clampin (CoI)	NASA Goddard Space Flight Center	mark.clampin@nasa.gov
Prof. Sara Seager (CoI)	Massachusetts Institute of Technology	seager@mit.edu
Dr. Jeff A. Valenti (CoI)	Space Telescope Science Institute	valenti@stsci.edu
Dr. Kevin B. Stevenson (CoI)	Space Telescope Science Institute	kbs@stsci.edu

OBSERVATIONS

Folder	Observation	Label	Observing Template	Science Target
TRAPPIST-1e				
	1	Prism Transit 1	NIRSpec Bright Object Time Series	(1) TRAPPIST-1
	2	Prism Transit 1	NIRSpec Bright Object Time Series	(1) TRAPPIST-1
	3	Prism Transit 1	NIRSpec Bright Object Time Series	(1) TRAPPIST-1
	4	Prism Transit 1	NIRSpec Bright Object Time Series	(1) TRAPPIST-1

ABSTRACT

We will construct the transmission spectra of this planet. Transmission studies will be conducted from 0.6-5 microns using four transit observations (when the planet passes in front of the host star). The transmission for this planets atmosphere will be obtained using NIRSpec SLIT1600 Prism.

Modern Earth-like atmosphere TRAPPIST-1e

Modern Earth-like atmosphere TRAPPIST-1e

TRANSMISSION SPECTROSCOPY FOR TRAPPIST-1 PLANETS WITH JWST

Detectability (SNR > 5)

SECONDARY ECLIPSES WITH JWST IN 2021+

Secondary eclipse

Morley et al. 2017 Lincowski et al. 2018 Lustig-Yaeger et al. 2019 Fauchez et al. 2019

1279 - Thermal emission from Trappist1-b

Cycle: 1, Proposal Category: GTO

INVESTIGATORS

Name	Institution	E-Mail
Dr. Pierre-Olivier Lagage (PI) (ESA Member)	Commissariat a l'Energie Atomique (CEA)	pierre-olivier.lagage@cea.fr
Dr. Jeroen Bouwman (CoI) (ESA Member) (Conta ct)	Max-Planck-Institut fur Astronomie, Heidelberg	bouwman@mpia.de

OBSERVATIONS

Folder	Observation	Label	Observing Template	Science Target	
MIRIM	MIRIM TRAPPIST-1b				
	1	TRAPPIST-1 b Eclipse	MIRI Imaging	(1) TRAPPIST-1B	
	2	TRAPPIST-1 b Eclipse	MIRI Imaging	(1) TRAPPIST-1B	
	3	TRAPPIST-1 b Eclipse	MIRI Imaging	(1) TRAPPIST-1B	
	4	TRAPPIST-1 b Eclipse	MIRI Imaging	(1) TRAPPIST-1B	
	5	TRAPPIST-1 b Eclipse	MIRI Imaging	(1) TRAPPIST-1B	

ABSTRACT

The aim is to detect the thermal emission from the TRAPPIST1 b exoplanet, an Earth mass like transiting exoplanet.

The emission will be obtained from photometric observations of eclipses of the exoplanet.

Given the temperature of the exoplanet, around 400 K, we will use the MIRI instrument.

1177 - MIRI observations of transiting exoplanets

Cycle: 1, Proposal Category: GTO

INVESTIGATORS

Name	Institution	E-Mail
Dr. Thomas P. Greene (PI)	NASA Ames Research Center	tom.greene@nasa.gov
Everett Schlawin (CoI) (Contact)	University of Arizona	eas342@email.arizona.edu
Dr. Pierre-Olivier Lagage (CoI) (ESA Member)	Commissariat a l'Energie Atomique (CEA)	pierre-olivier.lagage@cea.fr
Dr. Marcia J. Rieke (CoI)	University of Arizona	mrieke@as.arizona.edu

OBSERVATIONS

Folder	Observation	Label	Observing Template	Science Target	
MIRIM Transiting Planets					
· · · · · · · · · · · · · · · · · · ·	7	TRAPPIST-1 b Sec Ecl ipse	MIRI Imaging	(5) TRAPPIST-1B	
	8	TRAPPIST-1 b Sec Ecl ipse	MIRI Imaging	(5) TRAPPIST-1B	
	9	TRAPPIST-1 b Sec Ecl ipse	MIRI Imaging	(5) TRAPPIST-1B	
	10	TRAPPIST-1 b Sec Ecl ipse	MIRI Imaging	(5) TRAPPIST-1B	

THE AILES FOURIER TRANSFORM SPECTROSCOPY EXPERIMENTAL SETUP Turbet et al. 20

Turbet et al. 2019b, 2020c Tran, Turbet et al. 2018, 2019

FTS MEASUREMENTS OF CONTINUUM ABSORPTION IN CO₂-RICH ATMOSPHERES

Tran, Turbet et al. 2019

THE CAVITY RING DOWN SPECTROSCOPY (CRDS) GRENOBLE EXPERIMENTAL SETUP

COMPLEAT Project – Credit: D. Mondelain and A. Campargue

DIRECT IMAGING WITH E-ELT IN 2030+ (or maybe - and hopefully ! – before using the HCHR technique)

Reflexion phase curves with direct imaging

Turbet et al. 2016 Meadows et al. 2016 Lovis et al. 2017 Boutle et al. 2017

Direct imaging of **Proxima b** using the European "Extremely large telescope" (E-ELT)

(diameter 39 m; 2024+)

SYNTHETIC SPECTRA FOR DIRECT IMAGING OF PROXIMA B

Synchronous rotation mode and Earth-like oceans/atmosphere

Turbet et al. 2016, A&A

Combining *high-contrast coronagraphy* to *high-resolution spectroscopy* in the visible/near-IR directly detects the planet *reflected light* and measures:

- True mass
- · Albedo estimate
- Atmospheric composition
- Cloud properties
- Planet rotation
- Surface properties
- Atmospheric circulation
- Weather patterns
- Biosignatures

DIRECT IMAGING OF PROXIMA B ON THE VLT?!

Lovis et al. 2017, A&A

High-contrast High-resolution technique

Snellen et al. 2015

USING HIGH-RESOLUTION TO FURTHER REDUCE THE PLANET/STAR CONTRAST

HIGH-RESOLUTION SPECTRA OF PROXIMA (the star) AND PROXIMA B

DETECTABILITY OF PROXIMA B IN REFLECTED LIGHT

