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been examined in

— 1. Introduction

lower temperatures [e.g., 3-5]. These reactions are a function of rock and atmosphere compositions, and degree
of weathering. The detailed variations in radar emissivity with elevation may vyield insight into these 30°
characteristics. So far only the radiophysical behaviors of the tesserae, mountain belts and large volcanoes have

Here we investigate a selection of coronae having reductions of radar emissivity with altitude (Fig. 1). Coronae
are irregular to circular structures characterized by a complex interior zone occupied by flows, domes and
tectonic ridges, and like volcanic rises, they are suspected to be surface manifestations of mantle plumes [9,10].
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,2] have recognized that many of the venusian highlands display anomalous decreases in radar
thought to be the result of atmosphere-surface interactions at high altitudes, and hence at
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deep [6-8].
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2. Datasets
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4 Fig. 1 - Coronae selected are filled according to their emissivity variations with increasing altitude.

& Ceres, Miralaidji and Atahensik coronae from Diana Chasma (161.7E,-17.9N)

3. Results: Low emissivity excursions

\ ; R A few coronae exhibit anomalous declines in radar emissivity with altitude confined at their highest locations:
\ ' ! 2 7 : topographic ridges, interior edifices (e.g., domes) or extensive flow fields (Fig. 2). As seen in Fig. 3, the elevations
and magnitudes of their excursions are variable from a region to another. This allows us to group them.

§ Didilia and Pavlova coronae (39.4E, 16.2N) § Eve Corona (359.2E,-31.9N)
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1.00 Fig. 2 - Emissivity maps overlapping SAR images of a few coronae. Extensive flow fields are outlined in
white. Low emissivity excursions are shown by bluish patches and are found at the highest altitudes.
(see Fig. 4 for the cross-sections in Didilia and Pavlova coronae)
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