H⁺/O⁺ escape rates in the Venusian magnetotail and their dependence on upstream conditions

Moa Persson^{*,1,2},

Y. Futaana¹, A. Fedorov³, H. Nilsson¹, M. Hamrin², R. Ramstad⁴, K. Masunaga⁴, S. Barabash¹

*moa@irf.se

¹ Swedish Institute of Space Physics, Kiruna, Sweden, ²Dep. of physics, Umeå Uni., ³IRAP, CNRS, Toulouse, France, ⁴LASP, CU Boulder, CO, USA

2019-06-03

International Venus Conference, Niseko, Hokkaido, Japan

Venus' water

Escape of water as ions through space is one major mechanism

How is the H⁺ and O⁺ ion escape evolving over the solar conditions?

Venus once had water in its atmosphere, but today Venus is very arid [Donahue+97, Way+18]

How was the water lost?

International Venus Conference, 2019-06-03 Niseko, Hokkaido, Japan

Q_{H+}/Q_{O+} escape rate ratio

- A ratio close to 2-3 was found for solar minimum: Stoichiometric ratio of water
- How much does the solar cycle variations influence the escape rate ratio Q_{H+}/Q_{O+} ?

Instrumentation: VEX/ASPERA-4/IMA

ASPERA-4/IMA

FOV: 90x360°

Energy range: 0.01-36 keV/q M/q = 1, 2, 4, 8, 16, 32, >40

Time resolution: 192 s

Venus Express 2006-2014 >3000 orbits

International Venus Conference, 2019-06-03 Niseko, Hokkaido, Japan

Average velocity distribution functions

- Cylindrical Venus-Solar-Orbital (VSO) coordinate system
- Magnetotail divided into spatial grids
- Average distributions made for each spatial grid
- Average distributions used for calculating the average flux

O⁺ Flux maps

The inflow increases from solar minimum to maximum
 → Small decrease in escape rate

H⁺ Flux maps

Large increase in inflow from solar minimum to maximum
 → Escape rate decreases by a factor 3.6

Escape rates change over solar cycle

	Solar minimum	Solar maximum
	2006-2009	2010-2014
Q _{H+} [s ⁻¹]	7.6 \cdot 10 ²⁴	$2.1 \cdot 10^{24}$
Q _{O+} [s ⁻¹]	$2.9 \cdot 10^{24}$	$2.0 \cdot 10^{24}$
Q _{H+} /Q _O)	2.6	1.1

 The decrease is mainly due to an increase in inflow, significantly decreasing the H⁺ escape rate

Other escape channels' effect on total escape ratio

- Escape in magnetotail is not the only escape channel
 a)
 - Ion escape outside magnetotail
 - Neutral escape
- Ion escape
 - H⁺ and O⁺ escape mainly through magnetotail [e.g. Masunaga et al., 2018]
- Neutral escape
 - Sputtering gives Q_0 ~25 % of Q_{O+}
 - $Q_H \sim 50\%$ of Q_{H+}

[Futaana et al., 2017]

Q_{H+}/Q_{O+} escape rate ratio

- O⁺ escape rate average is steady over solar cycle
- H⁺ escape rate decreases by a factor 3.6 from solar minimum to maximum
 - Mainly due to an increase in inflow
- H⁺/O⁺ escape rate ratio 2.6 → 1.1
 - Average is ~2
- Indicate a historic escape rate below stoichiometric ratio of water: 2
 - As pre-historic solar conditions were more similar to solar maximum conditions [Persson et al., GRL, 2018]

What is the escape rate dependence on upstream parameters?

- The upstream parameters have evolved over the solar system history
 - Extrapolation of escape rates require detailed knowledge of correlations
- The Martian heavy ion escape was recently found to be production-limited [Ramstad et al., 2017]
- Is the Venusian heavy ion escape limited by the production of ions or by the amount of available energy?

Method

- Constrained one upstream parameter at a time into 7 bins
- Average distribution functions for O⁺ made in the magnetotail using the cylindrical VSO coordinate system

Preliminary results of O⁺ escape rate

 O⁺ escape rate dependent on the available energy in the solar wind → Energy-limited escape

Conclusions

- H⁺/O⁺ escape rate ratio 2.6 → 1.1
- Indicate a historic escape rate below stoichiometric ratio of water: 2 [Persson et al., GRL, 2018]

- O⁺ escape rate is energy-limited
 → Correlation between solar wind energy and escape rate
- Historically, more energy available in the solar wind
 - \rightarrow Higher O⁺ escape rate?
 - \rightarrow How is the inflow affected?

