

Upper atmosphere of Venus and impact from solar wind plasma

What we have learned from Venus Express?

Yoshifumi Futaana (PI of VEX/APSERA-4)^[1] G. S. Wieser, S. Barabash ^[1], J. G. Luhmann ^[2], T. L. Zhang (PI of VEX/MAG) ^[3], C. T. Russell ^[4]

- [1] Swedish Institute of Space Physics, Kiruna, Sweden
- [2] Space Sciences Laboratory, University of California, Berkeley, CA, US
- [3] Space Research Institute, Austrian Academy of Sciences, Graz, Austria
- [4] Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, US

No magnetic field with sufficient atmosphere of Venus → the induced magnetosphere

- \cdot The solar wind flow makes a characteristic magnetotail pattern, draping
- Energy / Momentum transfer from solar wind to ionospheric plasma. The planetary plasma is energized & escaped (E>10 eV for O⁺)
- Direct exposure of the atmosphere in the solar wind indicates the effective removal of the Venusian atmosphere (water) to space
 - → Magnetosphere protects the terrestrial atmosphere

Saunders and Russel, 1986

Accelerated planetary oxygen ions can be clearly observed by Venus Express/ASPERA-4

 $\boldsymbol{\cdot}$ Integration of the measured flux gives the total escaping flux

Escaping oxygen from Venus is (3–6)x10²⁴ s (~3 mbar for 4 Ga)

Fedorov et al., 2011

Futaana et al., 2017

Comparative perspective

Escaping O+ from Earth

The comparison of oxygen outflow for three planets

• Direct exposure of atmosphere in the solar wind does not increase the ion escaping

The classical view is too simplified

- \cdot The keys to consider are
 - \cdot Production of oxygen ions
 - Energy injection and transportation
 - Acceleration

Venus	• 5x10 ²⁴ /s
Mars	• 3x10 ²⁴ /s
Earth	• (10–100)x10 ²⁴ /s

André, 2012; Slapak et al., 2017; Ramstad et al., 2017; Futaana et al., 2018

Open questions:

- Does the magnetic field really protect the atmosphere?

- What limits the escape flux, injecting energy or available material?

Do disturbed condition increase the escaping flux?

- \cdot Yes: During ICME, 1.7 times higher escaping than usual
- \cdot No: In Solar Maximum, 1.5 times lower escaping than in solar minimum

- Disturbed CME enhance the outflow flux, while the disturbed solar maximum reduces the flux. Why?

Venus loses water [Barabash et al, 2007]. H+/O+ = 1.9

Solar cycle dependence of H/O ratio

- Solar minimum: 2.6 ... More proton
- \cdot Solar maximum: 1.1 ... More oxygen ... closer to ancient Venus

Protons are clearly returning to Venus during the solar minimum

Open questions:

- What is the H/O escaping ratio for the ancient Venus?
- What is the impact to the evolution of Venus?

High velocity (~5 km/s) flow below
300 km (exobase)
Dusk-to-dawn direction

Driving force: Pressure gradient

Vertical components exist

Precipitation to thermosphere

Acceleration >400 km

Open questions:

- What is the global flow pattern of ionospheric ions?

- How much energy is transferred from and to neutral thermosphere?

- How do the ionospheric ions get sufficient energy to escape?

/10

Venusward flux

Venusward flux, back to the planet

- Sometimes different flow directions for H⁺ & O⁺ are observed
- Venusward flux is frequently seen with "multiple plasmasheet crossings" [Masunaga et al., 2019]

Kollmann et al., 2016

Classical picture

Open questions:

- When and how are the outflowing ions returned to Venus?
- What is the impact of the return flow to the history of Venus?

The paradigm is shifting!

Venus Express ASPERA-4 and MAG measurements recently revealed the unexpected characteristics of the plasma environment:

- Outflowing flux of Venus ionospheric plasma via magnetotail is lower than that of the Earth
- \cdot Anti-correlation of outflowing fluxes on the solar activities is discovered
- \cdot The outflowing composition (H/O ratio) strongly depends on the solar activity
- \cdot Dusk-to-dawn high-speed flow of oxygen ions inside the ionosphere is found
- Frequently, the magnetotail structures do not follow the classical draping picture