Detection of large stationary gravity waves over ten Venusian solar days seen in LIR images

T. Kouyama (AIST), M. Taguchi, T. Fukuhara, T. Imamura, T. M. Sato, M. Futaguchi, T. Yamada, S. Murakami, G. L. Hashimoto, H. Sagawa, T. Satoh, and M. Nakamura Akatsuki science team and LIR team.

Introduction

Discovery of a large stationary gravity wave

2015.12.07

[Taguchi et al., 2016(DPS); Fukuhara et al., 2017]

Evening terminator

Morning terminator

- It stayed at almost same location (Aphrodite Terra) during the first observational sequence (5 days).
- This wave was absent in January 2016 and appeared again in July 2016 (lasted for ~one month).

Introduction

Discovery of a large stationary gravity wave

2015.12.07

[Taguchi et al., 2016(DPS); Fukuhara et al., 2017] The wave was absent in April 2016.

Morning terminator

Evening terminator

- It stayed at almost same location (Aphrodite Terra) during the first observational sequence (5 days).
- This wave was absent in January 2016 and appeared again in July 2016 (lasted for ~one month).

Introduction

Discovery of a large stationary gravity wave

2015.12.07

[Taguchi et al., 2016(DPS); Fukuhara et al., 2017]

- It stayed at almost same location (Aphrodite Terra) during the first observational sequence (5 days).
- This wave was absent in January 2016 and appeared again in July 2016 (lasted for ~one month).

Many stationary wave events seen in LIR images

- some wave events lasted several weeks.

2015-12-07T05:27:04

73219.100 km

Image rotation: 1 Fit status: 1 2015-12-07

Topographical dependence: <u>Clear, large</u> stationary waves appeared above **highlands in low latitudes**

Aphrodite Terra (west part) Atla Regio A: 2015-12-07 C: 2016-05-06 24 30° 30° Latitude 0° -30° -30 Dayside Dayside 30° 60° 90° 180° 210° 230° 120° 150° 150° East longitude East longitude A: 2016-08-03 C: 2016-12-23 30° 30° Latitude 0° 0° Night side -30° -30° Dayside Dayside 30° 60° 90° 120° 150° 180° 210° 230° 150° East longitude East longitude **Evening terminator**

• Similar appearance above a same region

• Different shapes at the different locations

Surface topography should affect the wave shape at each location

High-passed brightness temperature (K)

Significant every when they approach **evening terminator.**

Local time dependence!

Perturbation at lower altitudes can make the bow-shape structure

Stationary features in GCM and mesoscale model

230

228

226

224

220

222 emper

[Navarro et al, 2018] [Lefevre et al., 2019]

Topographical and local time dependence were well reproduced!

- Further detections of stationary waves in LIR images
- Mean temperature maps and their standard deviations
 - Local time Latitude (i.e. thermal tides)
 - Longitude Latitude (i.e. topography dependence)

Longwave Infrared Camera (LIR) / Akatsuki

Akatsuki in Final Test

<u>Data</u>

Altitude (km)

Wavelength: 8-12 μ m

- Thermal emission from upper cloud layer (65-75 km)
- Both dayside and night side of Venus

[Taguchi et al., 2007]

Spatial Resolution:

up to 300 km/pix

Data period in this study: 2015.12 (VOI) ~ 2019.03

~5 Venus years (224 Earth days) or more than 10 Venus solar days (117 Earth days)

Stationary features above Aphrodite Terra

(a) 2015-12-07

(d) 2017-11-07

(b) 2016-08-03

(e) 2018-03-07

(f) 2018-11-15 2018-11-15T15:08:21 957

> 3

Highpassed temperature (K)

< -3

3

(c) 2017-03-21

-03-21T17:03:20.389

7 events were detected almost every Venusian solar day (VOI-R = 1st Venusian day)

1. 2015-12-07 (VOI-R)	5. 2017-03-18	9. 2018-06-28	Quite regular event
2. 2016-04-02 (out of FOV)	6. 2017-07-13 (out of FOV)	10. 2018-10-23	L
3. 2016-07-27	7. 2017-11-06	11. 2019-02-16 (out	of FOV)
4. 2016-11-22 (out of FOV)	8. 2018-03-04	(12.2019-06-14 <mark>)</mark>	

Local time dependence

Clearly identified (> 1K amplitude)

[Kouyama et al., 2017]

A: Aphrodite Terra (West), B: Aphrodite Terra (East), C: Atla Regio, D: Beta Regio

2017/2 - 2018/4

Local time dependence

Afternoon ~ Evening

Averaged temperature: emission angle $=45^{\circ}$ In local time-latitude (i.e. Thermal tides)

⁻emperature (K)

228

225

222

Standard deviation (= where the wave is more active) In local time-latitude

Standard deviation (K)

2.8

1.2

Averaged temperature: emission angle =45° In longitude-latitude (i.e. Topography dependence)

 $e = 45^{\circ}$

Standard

deviation (K)

Standard deviation (K)

Standard deviation (K)

Small but many stationary features (from Fukuya's study, P50)

Averaging several images taken within a short period to enhance S/N ratio

Smaller features are clearly identified

Wavelength: 500-1500km

Amplitude: > 1.5K

No detection at high latitudes (< 40 deg)

Summary & Discussion

- Many large stationary waves have been confirmed, and their appearances are quite regular.
 - We can predict when they will appear in advance.(Today: Aphrodite Terra)
- The large stationary waves appeared above huge highlands in low latitudes, while the wave has not been confirmed above Maxwell Mons (60°N).
- The stationary waves showed **clear local time dependence**.
- From Fukuya's study, much smaller stationary features have been identified above even small highlands/peaks (as reported in Peralta et al, 2017).

Stationary features above Aphrodite Terra

(a) 2015-12-07

(d) 2017-11-07

(b) 2016-08-03

(e) 2018-03-07

(c) 2017-03-21

(f) 2018-11-15

Detected Venusian Solar day (VOI-R = 1st day)

1. 2015-12-07 (VOI-R)	5. 2017-03-18	9. 2018-06-28	13.2019-10-08	17.2021-01-17
2.2016-04-02	6.2017-07-13	10. 2018-10-23	<u>14. 2020-02-02</u>	18. 2021-05-14
3. 2016-07-27	7. 2017-11-06	11.2019-02-16	15. 2020-05-28	<u>19.2021-09-07</u>
4.2016-11-22	8. 2018-03-04	12. 2019-06-14	16.2020-09-23	20. 2022-01-03

> 3

Today's Venus (seen from Earth)

2019-06-04T00:00:00 (UTC)

Venus (seen from Earth)

2020-02-02T00:00:00 (UTC)

Venus (seen from Earth)

2021-09-07T00:00:00 (UTC)

Aphrodite Terra (west)	Atla Regio	Beta Regio	
1 2015-12-07	1 2016-01-10	1 2016-02-08	
2 2016-04-02	2 2016-05-06	2 2016-06-04	
3 2016-07-27	3 2016-08-30	3 2016-09-29	
4 2016-11-22	4 2016-12-26	4 2017-01-24	
5 2017-03-18	5 2017-04-21	5 2017-05-20	
6 2017-07-13	6 2017-08-16	6 2017-09-14	
7 2017-11-06	7 2017-12-10	7 2018-01-09	
8 2018-03-04	8 2018-04-07	8 2018-05-06	Released
9 2018-06-28	9 2018-08-01	9 2018-08-30	
10 2018-10-23	10 2018-11-26	10 2018-12-25	
11 2019-02-16	11 2019-03-23	11 2019-04-21	
12 2019-06-14	12 2019-07-18	12 2019-08-16	
13 2019-10-08	13 2019-11-11	<u>13 2019-12-10</u>	
<u>14 2020-02-02</u>	<u>14 2020-03-07</u>	<u>14 2020-04-05</u>	
15 2020-05-28	15 2020-07-02	15 2020-07-31	
16 2020-09-23	16 2020-10-26	16 2020-11-24	
17 2021-01-17	17 2021-02-20	17 2021-03-22	
18 2021-05-14	18 2021-06-17	<u>18 2021-07-16</u>	
<u>19 2021-09-07</u>	<u>19 2021-10-12</u>	<u>19 2021-11-10</u>	
20 2022-01-03	20 2022-02-05	20 2022-03-06	
21 2022-04-29	21 2022-06-02	21 2022-07-02	

Backup slides

Periodically appearing

Above Aphrodite Terra

A: 2015-12-07

A: 2016-08-03

A: 2017-03-21

Evenin Morning

Periodically appearing

Above Beta Regio

D: 2016-05-17

D: 2017-09-13

g

The stationary waves are quite regular events in Venus atmosphere

Tidal component (residual from zonal mean), e = 60 deg (~69 km)

Data period and LIR's sensing altitudes

- Data period: 2016 Oct. 2019 Jan.
 = more than three Venusian years (22,000 images)
- Wavelength: 8-12 μ m
 Thermal emission
- Upper cloud layer (65-75 km)
- Observing altitude
 Emission angle dependence:
 e = 60°: 68.9 km
 e = 45°: 67.3 km (1.6 km lower)
 → Vertical structure of the tides
 can be investigated

[Kouyama et al., submitted]

Blue line: evening terminator

Stationary gravity wave

 ■Longitude of the boundary between high and low temperature regions of the bow shape at the equator: ^λ_B ≈ 80°~84°

 ■Angular velocity of the boundary: ^ω_B ≈ -1~0 [deg/day]

 ■Rotation speed of Venus to the Sun: ^ω_R ≈ -3.1 [deg/day]

 ■The bow-shaped structure looks to be fixed not to local time but on the ground.

The Bow-Shaped Structure

2016-01-15 10:45:22 UT Sub S/C LT 21.3h

The bow-shaped structure disappeared when LIR observed the same longitude and local time region at the earliest opportunity of observation on January 15, 2016.

ship wave, sailing wave, wake

NASA satellite image (MODIS imager on board the Terra satellite) of a wave cloud forming off of Amsterdam Island in the far southern Indian Ocean. Image taken on December 19, 2005. (Wikipedia)