Investigations below the clouds of Venus with the IPSL Venus GCM

Sébastien Lebonnois

Laboratoire de Météorologie Dynamique/IPSL Sorbonne Univ., PSL Research Univ., Institut Polytechnique de Paris Paris, France

Gerald Schubert, Thomas Navarro

UCLA, LA, CA USA Itziar Garate-Lopez

UPV/EHU, Bilbao, Spain

François Forget, Aymeric Spiga, Arthur LeSaux, Riwal Plougonven LMD/IPSL

Below the clouds of Venus

Tool for these studies IPSL Venus GCM

Radiative transfer in deep atmosphere Strong impact on dynamics

Wave activity

Impact on angular momentum transport and zonal wind profile

Near-surface behavior

Planetary boundary layer (PBL) structure, slope winds and mountain waves

IPSL Venus GCM

- Three-dimensional: 96x96x50 (0~95 km)
- Vertical coordinates: hybrid (sigma/pressure)
- Dynamical core, transport of tracers
- Specific physics:
 - radiative transfer: Infrared Net Exchange Rates matrix
 Solar heating rates: tables
 - parameterizations of sub-grid processes: boundary layer (Mellor&Yamada 1982), convection
 - Topography
 - Photochemistry implemented (PhD of Aurélien Stolzenbach)
 - clouds microphysics, to be tested (PhD of Sabrina Guilbon)

Recent simulations:

- Lebonnois et al. 2016 (L16)
- Garate-Lopez & Lebonnois (GL18)
- New simulation, ongoing analysis (L19)

Radiative transfer sensitivity

Tuning solar heating in the deep atmosphere...

Radiative transfer sensitivity

New solar tuning => fit of the temperature to Vega 2 profile

Superrotation

Superrotation

Wave activity

Inertio-gravity waves

Lebonnois et al (2016)

Inertio-gravity waves

Most recent simulation (L19)

Wave activity below clouds

PBL structure

Role of slope winds

Mountain waves

Physical parameterization tested in the GCM

(~cloud-top)

Conclusion

Zonal wind field results from subtle balance between mean meridional circulation and wave momentum transport

Wave activity

- plays a crucial role in the redistribution of angular momentum
- is very sensitive to solar heating distribution in the deep atmosphere

Different type of waves can participate to this balance => tides, planetary-scale horizontal waves, inertio-gravity waves

Near-surface slope winds affect the stability structure of the PBL, which controls the emission and propagation of mountain waves

Interpretation of the zonal wind distribution needs - observational constraints on planetary-scale wave activity - confirmation by comparisons between several GCMs