

Richard Ghail Lead Scientist, Royal Holloway

Thomas Voirin EnVision Study Manager, ESA

Philippa Mason VenSAR, Imperial College London

Robbie Herrick VenSAR, ASF, Fairbanks

Geoff Burbidge VenSAR, Airbus, Portsmouth

Colin Wilson Science Investigation Lead, Oxford

Dmitri Titov EnVision Study Scientist, ESA

Lorenzo Bruzzone Radar Sounder, University of Trento

Caroline Dumoulin Radio Science, LPG Nantes

Pascal Rosenblatt Radio Science, Laboratoire Géoazur **Thomas Widemann** Programme Manager, Paris Obs.

Adriana O'Campo NASA Lead for EnVision

Jörn Helbert VenSpec-M, DLR, Berlin

Ann-Carine Vandaele VenSpec-H, Aeronomie, Bruxelles

Emmanuel Marcq VenSpec-U, LATMOS, Versailles

EnVision

Europe's revolutionary new mission to Venus

Science focussed on four themes

- **1.** Activity How geologically active is Venus today?
- **2. History** *How has Venus evolved through time?*
- **3.** Climate How has Venus' atmosphere been determined by its geological activity?

EnVision aims to understand

Venus from its clouds to the core

and so discover why Venus is so different to Earth

VenSpec	
VenSAR	
Subsurface Sounder	
Radio Science	

Science requirements

Slide 2/20

EnVision : IVC 2019

Science requirements flow down

Slide 3/20

EnVision : IVC 2019

VenSpec-U

Mapping SO, SO₂ and UV absorber at cloud top. 210-240 nm (@ 0.2 nm), 190-380 nm (@ 2 nm), ~10 km spatial resolution

VenSpec-H

Mapping of near surface atmosphere H_2O , HDO at O-15 km @ $1\cdot O8-1\cdot 2$ µm, H_2O , HDO, OCS, SO_2 at 30–40 km @ 2.44–2.47 µm, ~100 km spatial resolution

VenSpec-M

Mapping mineralogy by surface emission at 6 channels $0.82-1.2 \mu m$ at <50 km resolution

VenSAR

Surface morphology, 1–50 m, polarimetry, cm changes by DInSAR @ 3.2 GHz, $5 \times 38 \text{ km}$ radiometry at 1 K precision,

SRS

base image

© C. Hamilton

Subsurface radar down to 1000 m depth and ~10 m resolution @ TBD MHz

Radio Science

Two-way mapping, radio occultations, gravity field, k_2 love number

Detecting past and present geological activity

Slide 4/20

EnVision : IVC 2019

- ESA's Concurrent Design Facility baseline study successfully achieved the mission targets within the design to cost envelope
- Baseline mission is 2032 launch, chemical propulsion with aerobraking (12 to 24 months)
- Mission start in June 2035, with $a \ge 4$ cycle science duration (2.66 Earth years)
- ≥ 240 Tbit data return in 4-cycles, with >60% IR and sounder coverage, >15% InSAR and polarimetry (at ≤ 50 m resolution), and 2% HiRes (≤ 10 m) and 0.1% Spotlight (≤ 2 m)
- NASA contributions are under review; may include the telecomm system and/or
 - VenSAR front end with UK back end, or
 - Complete SAR instrument
- EnVision passed the Mission Development Review and is now starting Phase A study
- Two parallel industrial studies from June 2019 to Q2 2021 ahead of final down-selection in Sep 2021

Current status

Slide 5/20

UNDERSTANDING NEIGHBOUR IS SO

EnVision

Slide 6/20

EnVision : IVC 2019

Understanding WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Frozen eccentricity orbit reduces propellant consumption, but leads to:

- Limitation on maximum accessible incident angle at highest altitudes
- Rapid changes in altitude over equator are problematic for beam/image convergence
- Non-uniform degree strength gravity field

Science orbit

Slide 7/20

Radio Science experiment and VenSAR geodesy

EnVision : IVC 2019

Slide 8/20

Variable degree strength gravity field from 70 to 150

Highest in the low-resolution areas of Magellan in the southern hemisphere

Radio Science & Geodesy

• *Gravity experiment*

Shallow and deep interior structure, thermal and tectonic evolution of the planet

Radio-occultation

Temperature and pressure profiles in the troposphere, Total Electron Count (TEC) profiles in the ionosphere, monitoring of H_2SO_4 vapour at cloudbase

 Precise Orbit Determination Improved InSAR from <100 m orbit knowledge

VenSAR Geodesy Measurements

- *Planetary ephemerides* Spin axis wobble, improved GR, GM and J_2
- Length of Day

Measure and understand variability in spin rate

Radio Science experiment and VenSAR geodesy

Slide 9/20

EnVision : IVC 2019

+ Magellan + Venus Express 1990 1995 2000 2005 2010 2015

Spatial oversampling provides for mapping and confirmation of detected eruptions

VenSpec-M is a multi-spectral imager designed to:

- Map surface composition on a global scale
- Monitor for volcanic activity
- Map near surface water vapour abundance

Pioneered by VIRTIS on Venus Express, VenSpec-M greatly improves sensitivity and spectral and spatial coverage:

- 14 spectral bands cover all five surface windows
- Oversampling at 10 km spatial resolution
- High signal to noise ratio

VIRTIS on Venus Express mapped the hot surface at 1 μm using emissivity data

VenSpec-M: IR imaging

Slide 10/20

VenSpec-H is a high resolution infrared spectrometer designed to:

- Measure H₂O and HDO contents in the lower Venus atmosphere
- Probe H_2O , CO, OCS, SO₂ at the 30-40 km

VenSpec-U is an ultraviolet spectrometer designed to:

- Map mesospheric variability of SO and SO₂, cloud and aerosol properties
- Distinguish atmospheric circulatory change from volcanic emissions

VenSpec-H, -U: IR and UV spectroscopy

Slide 11/20

EnVision : IVC 2019

The Subsurface Radar Sounder will acquire information on the shallow Venus subsurface to:

- Characterize different stratigraphic and structural patterns in the subsurface
- Map the vertical structure of geological units by exploring the subsurface properties of tessera, plains, lava flows, impact ejecta and other materials
- Detect subsurface structures that are not directly linked with surface, e.g. stealth coronae

Portion of western Medusae Fossae Formation, a low-density pyroclastic deposit spanning across the crustal dichotomy on Mars td: Thin deposit (50–100 m) **nh**: North Hill deposit (~580 m) ep: Plains reflectors under Elysium Planitia [Carter et al. 2009]

Subsurface Radar Sounder

Slide 12/20

EnVision : IVC 2019

VenSAR requirements:

- 30-50 m resolution observations
 - ~20% of planet observed \geq 3 times with same geometry
 - Full raw (SLC) data for DiffInSAR
 - Polarimetry
 - Topography from stereo and/or interferometry
- 6-10 m high res imagery
- 1-2 m resolution spotlight imagery
- Radiometry

Illustration of possible target region of 20% coverage for repeated observations at ~ 30-50 m resolution. To include representative sample of all terrain types.

VenSAR

Slide 13/20

EnVision : IVC 2019

Science operations

Slide 14/20

EnVision : IVC 2019

- Normal look
- Pass to Pass
- *Opposite look*

Polarimetry UltraRes

VenSpec-M emission maps

VenSpec-M emission spectra

Weathered basalt [hematite-rich]

Fresh basalt [*magnetite-rich*]

Simulated 3-band [1·1, 1·02, 0·9 µm RGB] VenSpec-M on VenSAR image

Global scale ($10^2 - 10^4$ km scale)

Slide 15/20

EnVision : IVC 2019

VenSpec Spectral Profiles

SAR emissivity

Weathered basalt [low permittivity]

Fresh basalt [high permittivity]

Simulated colour-coded emissivity [relative permittivity]

SAR polarimetry

Granular material [weathered lavas, soils]

Simulated polarimetric [VH-VV-HH RGB] PolSAR

Reconnaissance (10⁻¹ - 10³ km) scale

Slide 16/20

EnVision : IVC 2019

Rough bare rock [aa lava, boulders]

30 m Polarimetric 53-km scanSAR swath

30 m DInSAR with 60 m derived DEM

Reconnaissance (10⁻¹ - 10³ km) scale

Slide 17/20

EnVision : IVC 2019

2 m UltraRes 30-km wide stripmap swath

- Reaching ≤ 10 m resolution used for selected targets, including Venera landing sites
- Nested data are essential for understanding context and global significance
- The combination of interior, surface, and atmospheric data is key to understanding processes and cycles

High-res (1 – 10 m resolution) imagery

Slide 18/20

EnVision : IVC 2019

Holistic nested data

- To really learn about Venus, we need to use all the available types of data that can be acquired from orbit
 - EnVision delivers gravity, UV, IR, S-band and sounding radar
- We need to link observations at all scales
 - EnVision delivers nested data from global to 1 m
- We need to understand change
 - EnVision delivers repeated observations over 4 Venus days (32 months) with IR and InSAR

EnVision the future of Venus exploration

Slide 19/20

EnVision : IVC 2019

Centred at 120°E

EnVision warmly invites your participation and support.

More information: <u>www.envisionvenus.eu</u>

Richard Ghail (Royal Holloway) Lead proposer:

Colin Wilson (Oxford U) & **Deputy Leads**: Thomas Widemann (Paris Obs)

WHY ARE VENUS AND **THE EARTH SO DIFFERENT ?**

AN ESA M5 PROJECT