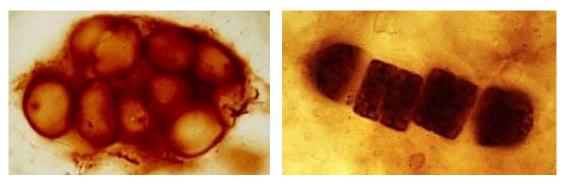
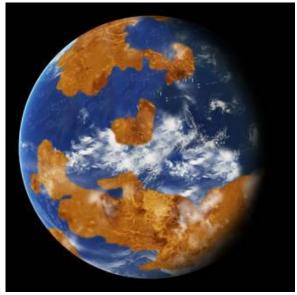
[#03-1] Microscope for Life Detection in Venus Clouds

Sasaki S. * Yoshimura Y. Enya K. Miyakawa A. Fujita K. Usui T. Ohno S. Yamagishi A. Limaye S. S. 20190601 IVC

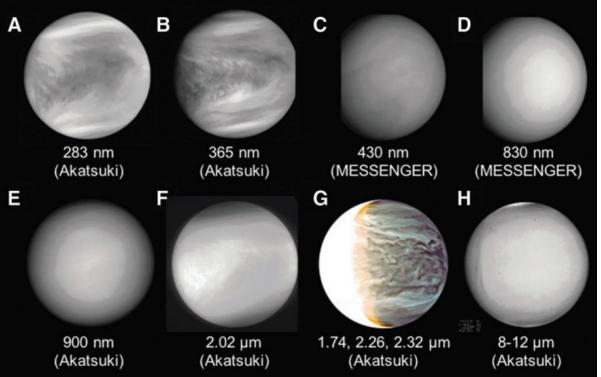

Ancient Venus' climate

could have remained habitable until at least 0.715 Gya.

<u>M. J. Way</u> et al., Geophys. Res. Lett. 43 (2016) 8376-8383.


Polybiosphere or biopolysphere

D. Grinspoon

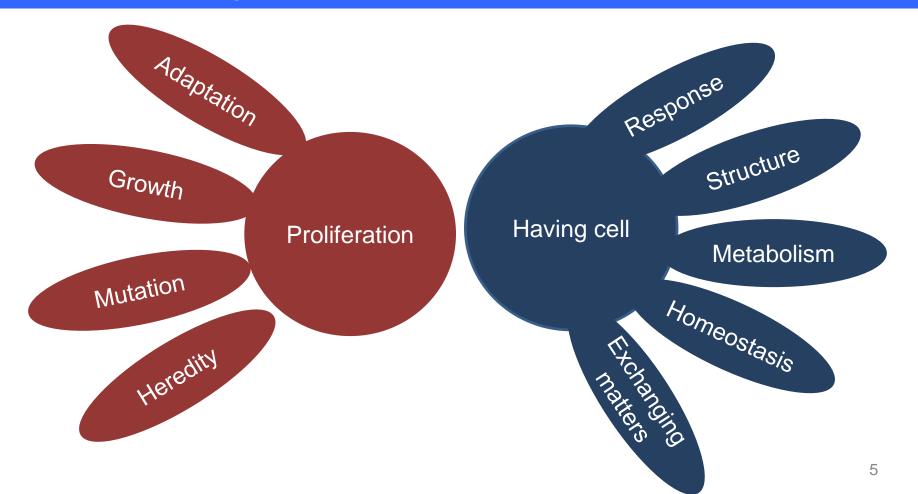

Ancient Fossil Bacteria : Pictured above are two kinds cyanobacteria from the Bitter Springs chert of central Australia, a site dating to the Late Proterozoic, about 850 million years old. On the left is a colonial chroococcalean form, and on the right is the filamentous *Palaeolyngbya*.

https://ucmp.berkeley.edu/bacteria/cyanofr.html

https://www.nasa.gov/feature/goddard/2016/nas a-climate-modeling-suggests-venus-may-havebeen-habitable

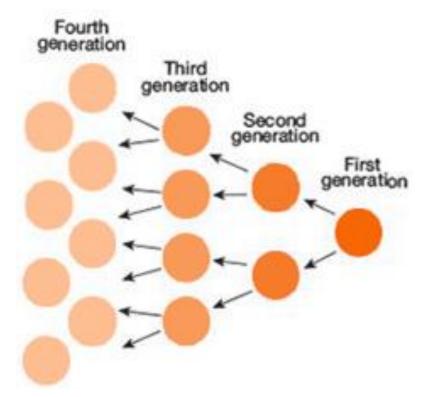
Venus' Spectral Observations + lab experiments

=> Unknown factor (cell?) in the clouds suspected

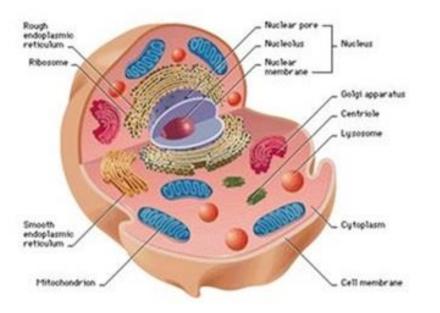

Sanjay S. Limaye, Grzegorz P. Słowik et al., ASTROBIOLOGY 18 (2018) 1181-1198. 3

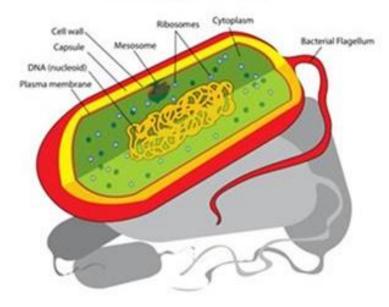
Life Detection => Collection of Particle information

... with the expectation of finding life

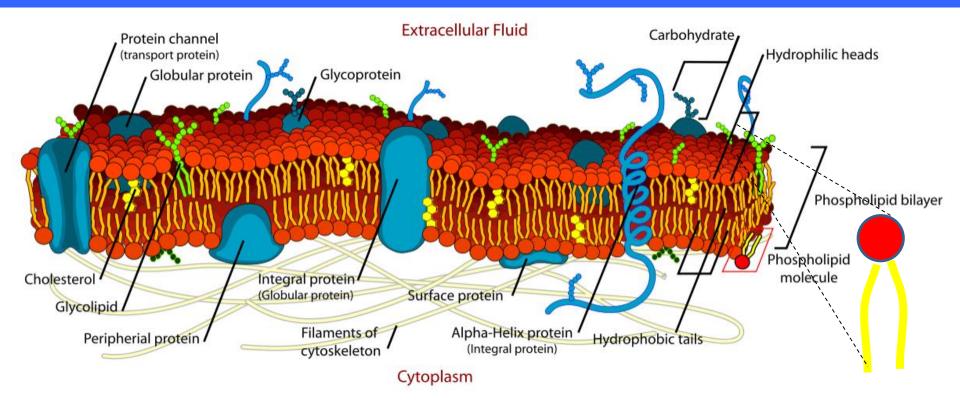

- Shape
- Density
- Possible membrane chemical characteristics (or what's inside)
- Possible chemical reaction inside
- ...can be obtained using Fluorescent Microscope
- with suitable fluorescent dyes / ex-em wavelength

Division or proliferation of the "cell"


https://en.wikipedia.org/wiki/Agar_plate


https://www.genecopoeia.com/product/cell-proliferation-assay-2/

1. Semi-permeable membrane that surrounds the "cell"


Eukaryotic Cell

Prokaryotic Cell

https://slideplayer.com/slide/6228179/ 7

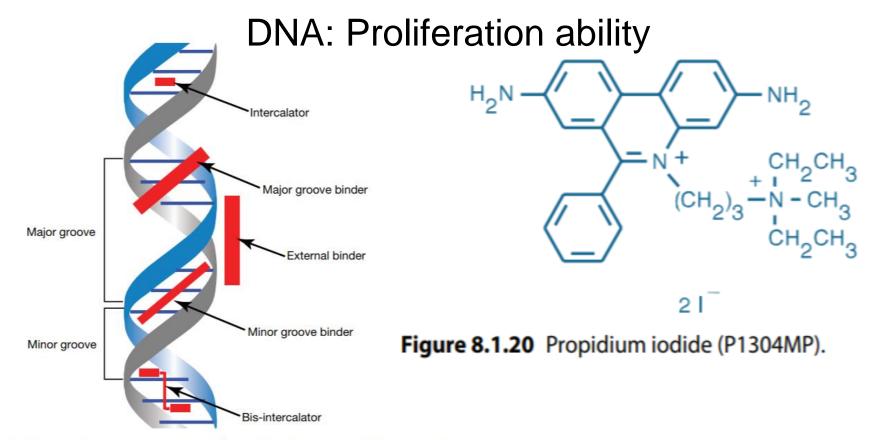
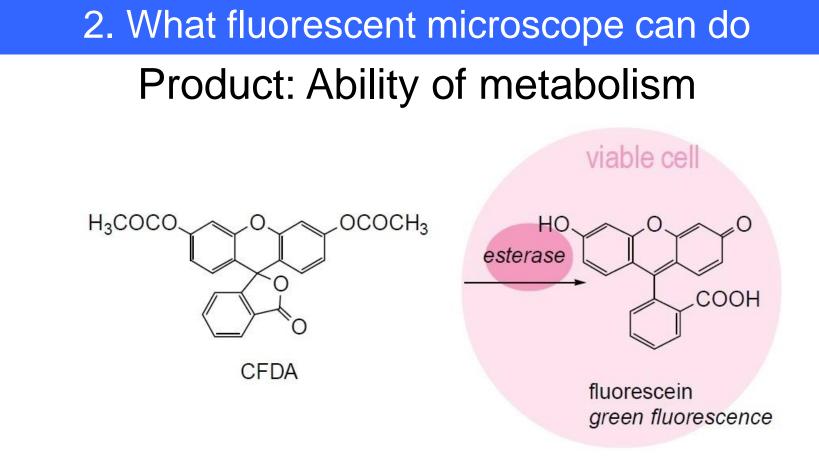



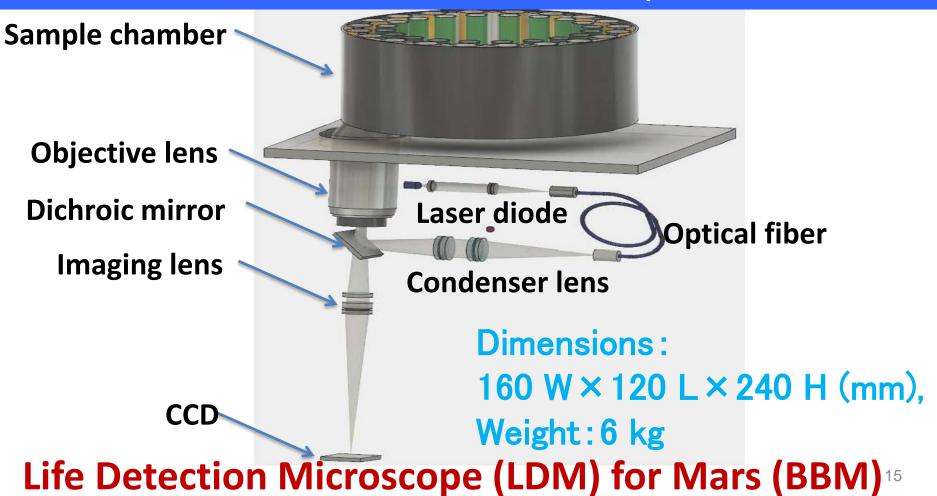
Figure 8.1.1 Schematic diagram showing the different binding modes of dyes (and other ligands) to DNA.

Amino group : Membrane structure with biological compound

Gin

Glu Yal Cys lle H₃N⁺ Ala Ser https://www.researchgate.net/figure/Reaction-of-fluorescamine-with-an-Cys Pro ÅSD amino-acid-Dye-is-dissolved-in-acetone-1-mM-added fig5 252305883 Lys -COO-Thr YLeu Y His http://www.biology-pages.info/P/Polypeptides.html + он OH Fluorescamine Fluorescamine-derivatized (non-fluorescent) amino acid īυ

https://www.dojindo.com/store/p/149-Bacstain-CFDA-Solution.html


Live cells : membrane without pinholes => strong fluorescence (concentrated) + only hydrophobic dye positive Dead cells : membrane with holes (or no membrane) => no fluorescence

+ both hydrophobic/hydrophilic dye positive

	<i>Escherichia coli</i> (Live cells)	<i>Escherichia coli</i> (Dead cells)	Miniature <i>E. coli</i> cells (Live cells)	Miniature <i>E. coli</i> cells (Dead cells)	Protein (BSA)	Proteinoid	РАН
SYTO24	:	- 、	1.		*		
Propidium Iodide						*	
SYPRO Red	1.5.6	•	•				1. A
CFDA-AM	•						

Microbes, miniature cells, proteins, proteinoid, polycyclic aromatic hydrocarbons (PAH) can be detected.

	Live cells (membrane with selectivity)	Dead cells (membrane w/o selectivity)	Protein (certain molecule)	PAH (certain molecule)
(1) SYTO24	0	0	0	0
(2)Propidium iodide		0		
(3) SYPRO Red	0	0	0	0
(4) CFDA-AM	0			

3. Cloud Particles

https://www.olympus-lifescience.com/ja/support/learn/02/038/

"soft" impactor

Insect collecting net

VAMP LEAF 20 m s⁻¹

suppose 10 liquid droplets cm⁻³ 10⁴ particles m⁻³ 1 m² area x 100 m several microL liquid with $\sim 10^6$ particles

https://microscopetalk.wordpress.com/tag/collecting-insects/

3. Cloud Particles

Liquid particle

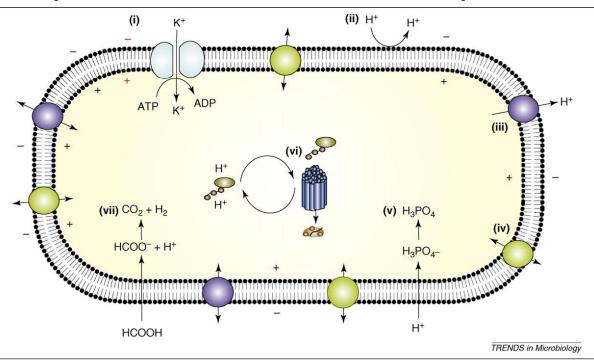
- <u>Impactor</u>: Size, Shape, Density information available (but sample transfer to microscope complicated)
- <u>Microchannel</u>: Size, Shape, Density information lost (but sample transfer to microscope simple)

4. In the Cloud

Acidophiles/tolerants

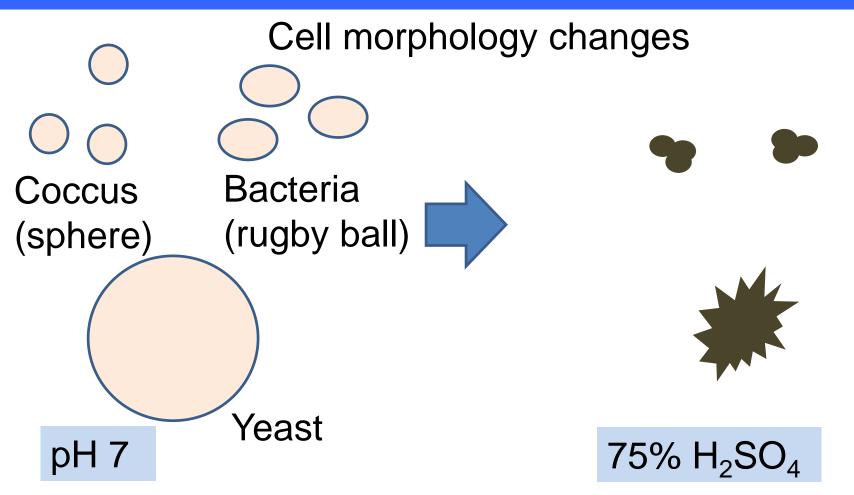
Alkaliphiles/tolerants

² Acidiphilium (pH 1-4.5)						⁵ Pseudomonas (pH 6-10)					Clostridium							
	Cytalidium ³ Sulfolobus H 0.2-0.7) (pH 1.3 3.0)		² Bacillus (pH 2-4.5) ² Acidothio ^{1,4} Acidea, Acidothr		2, zbacillus (pH 1-7.0)				⁸ Alkalibaci Bacillus, Desulfona Natranori	(pH 7-11)								
² Ferroplasma Cladosporiu Picrophilus Penicillium,			ium, 1 a,Tric	Phiało	ryptococcus, Fusarium, lophora, erma, Trichosporon,				(pH 7-10	¹⁰ Cladosporium, Fusarium, Penicillium, Sodiomyces, Thielavia (pH 8-11)								
	╉		_			Η			┢		_		┢					
ō	1	2	3	4		5	-	- 5 cillus, Pse	- 7 wd	8 Iomonas, Se	erratia	-	10 -14)	11	1	12	13	14


15-29 Aspergillus, Cladosprorium, Penicillium, Phialophora, Trametes, Trichoderma (pH 1.5-14)

Wide pH range tolerants

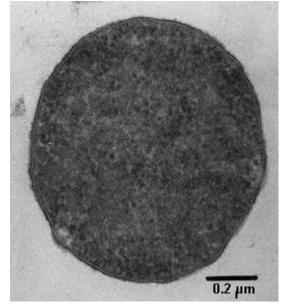
Appl Microbiol Biotechnol¹(2016)


4. In the Cloud

pH homeostasis in acidophiles

passas associated with pU homeostasis in anidenhiles. IN Anidenhiles reverse the AU to partially deflect the inward flow of protons. One potential

5. So far



20

5. So far

- Model microorganisms
 - Acidphiles
 - Bacteria
 - Yeast
- Dyes

- Some works in 75% H_2SO_4

Thermoplasma acidophilum

grows best in hot environments, usually between 55 and 60 degrees Celsius. This genus is most famous for its acidophilia, preferring pH range of 0.5-4.

https://microbewiki.kenyon.edu/index.php/Thermoplasma