宇宙に生命を探す

ISS

太陽系における生命と有機物探査

目次

- 1. 地球大気圏微生物
- 2. 地球低軌道の微生物
- 3. 火星での生命探査
- 4. その他の太陽系天体

ISS

年	実験手法	高度(km)	採集方法	分離菌	菌密度	研究者
1936	気球	11-12km		<i>Bacillus</i> sp. Fungi	0.14 m-3	Rogers, L. A., Meier, F.C
1966	航空機	3 km	溶解性のゼラチン泡フィ ルター	Fungi Bacillus Micrococcus	5-200 m-3	Fulton, J. D.
1967	気球	10-30km	ポリウレタン泡フィルタ ーによる空気の吸引濾過	Micrococcus Alternaria Cladosporium	0.8-0.02 m - 3	Bruch, C.W.
1976	気 象 観 測 ロケ ット	48-58 km	フィルム上の栄養培地	Micrococcus Micobacterium	31	Imshenetsky, A.A. Lysenko, S.V., Kazakov, G. A., Ramkova, N. V.

- 微生物はどこまでいるか?
- •惑星間移動は可能か?

航空機を用いた微生物採集 Yinjie Yang,板橋志保、横堀伸一、山岸明彦 (東京薬科大学)

飛行機内部のサンプリング装置

成層圏で採集した菌の 電子顕微鏡写真

Yang Y. Itahashi S., Yokobori S. and Yamagishi A. UV-resistant Bacteria isolated from upper troposphere and lower stratosphere. Biol.Sci.Space 22:18-25 (2008) 1µm x10,000 15kU

0001

5株が採集された。それらの、菌の種類を遺伝子から決めた。

Clone	Altitude	Related genus
ST 0316	10-12	Deinococcus
TR 0125	0.8-5.8	Deinococcus
TR 0126	4.6-10	Streptomyces
TR 1103-2	1.2-7.8	Bacillus
TR 1103-3	7.8-12.2	Paenibacillus

Yang Y. Itahashi S., Yokobori S. and Yamagishi A. UV-resistant Bacteria isolated from upper troposphere and lower stratosphere.*Biol.Sci.Space* 22:18-25 (2008)

航空機で採集した株は非常に強い紫外線耐性を示した。これまでもっとも紫外線耐性が強い*Deinococcus radiodurans*と同じかもっと強い。

Yang Y. Itahashi S., Yokobori S. and Yamagishi A. *Biol.Sci.Space* 22:18-25 (2008)

大気球を用いた、 微生物採集

> Yinjie Yang, 横堀伸一 山上隆正 斉藤義隆 福家義一 山岸明彦

気球が飛んだ軌跡

2004.08.26 14:36

年	実験手法	高度 (km)	捕集方法	分離菌	研究者
1936	気球	11~21	パラシュートで落下する無菌 のサンプリング装置	<i>Bacillus</i> sp., <i>Macrosporium</i> sp	. Rogers and Meier
1965	気球	38~41	フィルターを通して空気を吸 う。	<i>Penocillium</i> sp	Soffen
1975	ロケット	48~77	上昇中にロッケットの前部に、 ポリエチレンバックに入った 無菌の栄養培地を曝露させる。	<i>Mycobacterium</i> sp. <i>Micrococcus</i> sp.	lmshenetuky et al.
2003	飛行機	20	飛行機の底面に無菌のプレー トを曝露させる。	<i>Bacillus</i> sp. <i>, Penicillium</i> sp. <i>Microbacteriaceae</i>	Griffin,
2008	飛行機	0.8~12	遠隔操作されたポンプによっ て メンブランフィルターに 通して空気を引く。	<i>Deinococcus</i> sp <i>.,</i> <i>Streptomyces</i> sp., <i>Bacillus sp.Peanibacillus</i>	Yang et al.
2008	気球	12~35	遠隔操作されたポンプによっ て メンブランフィルターに <u>通して空気を引く</u>	<i>Bacillus</i> sp., <i>Paenaebacillus</i> sp	o. Yang et al.

高度 (km)	方法	捕集された微生物種 (文献)
0.8-12	飛行機	<i>Deinococcus</i> sp., <i>Streptomyces</i> sp., <i>Bacillus</i> sp., <i>Paenibacillus</i> sp. [1]
12-35	大気球	Bacillus sp., Paenibacillus sp. [4]
20	飛行機	Micrococcaceae, Staphylococcus, Brevibacterium. [5]
41	大気球	Bacillus sp., Staphylococcus sp., Engyotontium sp. [3]
48-77	ロケット	Mycobacterium sp., Micrococcus sp. [6]

Deinococcus sp. [1]Bacillus sp. [2]Aggregated cells [3][1] Yang et al., 2008 [2] Smith et al., 2011 [3] Wainwright et al., 2004, [4] Yang et al.,2008b [5] Griffin et al., 2008 [6] Imshenetsky et al., 1974

微生物密度の高度依存性

[1] Yang et al., 2009, Biological Sciences in Space, 23 151-163

[1] Smith, 2013, [2] Burcker and Horneck, [3] Dehel et al., 2008 [4] Smmith et al., 2011,
[5] Van Eaton et al., 2013 [6] Kring, 2000, [7] Wainwright et al., 2006

たんぽぽ計画 [有機物・微生物の宇宙曝露 と宇宙塵・微生物の捕集]

 ○山岸明彦^{1、}横堀伸一¹、河口優子¹、Yinjie Yang¹、川尻成俊¹、、 白石啓祐^{1、}清水康之¹、高橋勇太¹、杉野朋弘¹、鳴海一成²、、 佐藤勝也²吉田聡³、中川和道⁴、谷川能章⁴、富田-横谷香織⁵、 林宣宏⁶、今井栄一⁷、奥平恭子⁸、河合秀幸⁹、小林憲正¹⁰、、 田端誠^{9,11}東出真澄¹²、三田肇¹³、薮田ひかる¹⁴、橋本博文¹¹、

¹東京薬大・生命、²JAEA・量子ビーム、³放医研・放射線防護、
 ⁴神戸大・院人間発達環境、⁵筑波大・生命環境、
 ⁶東京工大・院生命理工、⁷長岡技大・生物、⁸会津大、
 ⁹千葉大・院理、¹⁰横浜国・院工、¹¹JAXA/ISAS、
 ¹²JAXA・未踏技術研究セ、¹³福岡工大・工、¹⁴大阪大・院理

微生物? 生命の起原 関連物質

地球外

主成分:シリカ (SiO₂) 上部の密度:0.01 g/ml 下部の密度:0.03 g/ml

- 超低密度であり衝突時の抵抗が少ない。
- 抵抗が少ないことで衝突物の蒸発を防ぐことが可能である。
- これまで様々な宇宙での捕集実験に使われてきた。
 空気中の水分の影響を防ぐため疎水性である。 (Tabata *et al.*, 2011)

エアロゲル:すかすかの固体、成分はガラス

エアロゲル

捕集パネル

エアロゲルを捕集パネルにいれて、宇宙空間に曝露して、宇宙塵を捕集する。
 The SEM image of aerogel surface(Bar=100 nm)

宇宙に微粒子があれば毎秒8kmで飛んでいるはず. 2段式ガス銃で微生物を高速でエアロゲルに衝突

微生物 (*Deinococcus radiodurans*)を 粘土鉱物と混ぜて100µmの粒子にしたものを弾 丸(サボ)に詰めて4 km/sに加速。

蛍光染色により微生物を検出できた。

微生物を含む粒子を加速、エアロゲル に衝突後、蛍光色素で染色

緑色蛍光

Comparison of fluorescence

赤色蛍光

青色蛍光

× R1
— Expon.(R1)
× Clay(G)
— Expon.(Clay(G))
× Clay(R)
— Expon.(Clay(R))
× Clay(B)
— Expon.(Clay(B))

光学フィルターで、微生物 (Deinococcus radiodurans)を染色 した色素と粘土を区別できる。

微生物(D. radiodurans R1)の緑色 蛍光は、鉱物よりも早く弱くなる。

Kawaguchi, Y. et al. Ori. Life Evol. Biospheres 44, 43-60, (2014)

宇宙空間での有機物の生成

たんぽぽ計画

1. 目的

地球外

有機物・微生物の宇宙曝露と 宇宙塵・微生物の捕集(たん ぽぽ)

生命の天体間の移動(地球から地球外へ)

第一サブテーマ

「地球から宇宙へ」微生物採集

第二サブテーマ

「地球微生物の宇宙生存」微生物の曝露実験 生命起原物質の宇宙空間での移動と変成

第三サブテーマ

「地球外有機物の宇宙変性」高分子有機物の曝露実験 第四サブテーマ

「宇宙から地球へ」宇宙塵中有機物分析 微粒子捕集装置としてのエアロゲル

第五サブテーマ

「世界最高性能エアロゲル」の宇宙実証

デブリ計測

第六サブテーマ

「微小スペースデブリフラックス評価」

たんぽぽ計画

- 地球の微生物が宇宙へ飛び出すことはないか?
- 宇宙から有機物がやってこないか?

100 mm

微生物と有機物用の曝露パネル

- サンプルプレートの穴に微生物や有機物を乾燥保持
- 上側のプレートには紫外線があたる。
- 下側のプレートは暗所に保持
- ・1年後、2年後、3年後に1枚ずつ曝露パネルを回収、
- ・地上帰還する。

Microbes exposed

Nostoc sp. HK-01 Schizosccharomyces pombe JY3

Exposure microbes

Analysis

<i>Nostoc</i> sp. HK-01	Survivability, DNA damages
S. pombe JY3	Survivability, DNA damages

Exposure experiment of organic compounds

	UV	γ−Ray	Heavy ion	Temperature	Total
Glycine	2 x 10 ⁻³	100	100	100	2 x 10 ⁻³
Isovaline	3×10^{-3}	> 99	100	100	3×10^{-3}
Hydantoin	29	100	100	100	29
Ethylmethylhydantoin	72	> 99	100	100	72
Complex organics (CAW)	36	100	100	100	36

✓ Cosmic rays will not affect for alteration of amino acids their precursors.
 ✓ UV is the largest effective energy source for alteration of amino acids their precursors. We are expecting higher survival of precursors of amino acids than amino acids themselves.

Ultraviolet light:Xe-excimer lamp (172 nm) & New SUBARU BL-6 (> 130 nm) γ -rays: 60 Co source at JAEA Takasaki; 200 kGy (> 1000 yr)Heavy ion:Carbon ion (290 MeV) at HIMAC (NIRS); 16 kGy (ca. 160 yr)Temperature:Max. 80°C

K. Kobayashi et al., Trans. Jpn. Soc. Aeronaut. Space Sci., 12, No. ists29 (2014).

宇宙塵を国際宇宙ス テーションで エアロゲルを用いて 採集する 有機物を分析する

数 µm

たんぽぽ計画

- 2015年打ち上げ
- 国際宇宙ステーションの曝露部に装置を設置
- ・1年後、2年後、3年後に装置を取り込む
- エアロゲルと曝露サンプルを地上に持ち帰る
 - 顕微鏡観察で微生物を観察
 - 様々な方法で宇宙塵を観察
 - 微生物の生存を調べる

2015年4月15日スペースX社、 ドラゴンロケットで打ち上げ

たんぽぽ装置 2015年4月17日 国際宇宙ステーション到着

エックスハム

国際宇宙ステーション 曝露部 たんぽぽ装置設置場所

2015年5月14日

エックスハムをエアロックから外へ

ロボットアームで移動

JAXA/NASA

ハンドレールに 設置

大

JAXA/NASA

2015年5月26日 曝露開始

エアロゲル:すかすかの固体、成分はガラス

エアロゲル

捕集パネル

エアロゲルを捕集パネルにいれて、宇宙空間に曝露して、宇宙塵を捕集する。

2016年8月地上帰還、9月20日受け取り

- 曝露パネル 10月3日研究者へ
 - 微生物: 生存実験
 - 有機物:量の変化
- ・捕集パネル
 - 初期分析:トラック、末端微粒子 撮像中
 - 今年末に研究者へ
 - 鉱物
 - 有機物
 - 微生物

温度計(黄枠内)を画像から読み取り

国際宇宙ステーションの太陽ベータ角

(注1) 183款道裏度を通常実度(407km)、軌道傾斜を51.6度としています。
(注2) 巻分の日を0日とし、そのときの昇交点未任を0度と仮定しています。
(注3) 軌道変動要因は地球の値平性のみを考慮しています。

☆観察日

TNP-2017101

サンプル	窓材
微生物	MgF_2
微生物	SiO ₂
シアノバク	ウテリア
有機物	MgF_2
有機物	SiO ₂
アラニン	MgF_2
アラニン	SiO ₂
放射線	遮蔽0
放射線	遮蔽1
放射線	遮蔽2
	・ サ つ つ つ 物 物 ジ 右 有 ア ア 放 放 物 物 ジ イ 有 ア ア 次 放 物 物 ジ イ 有 ア ア 次 放 物 物 ジ イ 有 ア ア ア 放 放 数 約 、 の 有 有 ア ア ア 放 放 数 約 、 の う う 引 が 約 の 、 の う う り が 約 の う の う の う の う の う の う の う の う の う の

4. これまでの成果

放射線量(遮蔽依存性)

太陽放射強度の1年間積算光量 S₁₆₀₋₁₉₀^{1yr}=1.517 MJ m⁻²の0.47%.

夜は日射がないので 0.5 太陽高度立体角 係数0.315x0.315.

 $0.5 \times 0.315 \times 0.315 = 0.050 = 5\%$

差は、太陽電池パネルの遮蔽

Yamagishi et al. 2018

TNP-2017101

Exposure conditions of environmental factors

	UV (kJ/m ²)	Radiation	Vacuum	Tempureture	Humidity(%)
	MgF ₂ : 110-315nm	(mGy)		(°C)	
	SiO ₂ : 170-315nm				
Front (UV-irradiated)	3.4 x 10 ³			22 0 + 5	
	3.1 x 10 ³	250-298	10 ⁻⁴ ~10 ⁻⁶	23.9⊥3~ 125±5	0
Bottom(dark cont.)	—			-12.5±5~	
ISS(cont.)	_	97-106	_	19~25	45~55
Ground(cont.)	_	1.4	_	20	29~45

Yamagishi et al. 2018

微生物生存率の厚さ依存性

微生物が塊で移動可能かどうかの検証。

- おもて側
- 1 μm, 100 μm, 500 μm 1000 μm, 1500 μm
- 裏側 1000 µm

漤 存 生

放射線耐性菌結果

- ・放射線耐性菌0.5 mmで宇宙曝露を耐える
- ・
 か射線耐性菌0.5 mmで紫外線による塩基変 性、二本鎖切断
- ISS与圧部で乾燥時酸化による二本鎖切断

2年後、3年後の生存率測定

1. 予想生存カーブ

4. これまでの成果 シアノバクテリア宇宙環境曝露

富田-横谷香織·木村駿太(筑波大)、加藤浩(三重大)、安部智子(電機大)、園池公毅(早稲田)、 大森正之(中央大)

生存率(%)

地上対照 ISS対照 宇宙 宇宙 暗所 明所

紫外線遮蔽されれば生存。

分析方法

※今回の結果はグリシン、ヒダントイン、CAWのみ

Mita and Kobayashi et al. 2019

/G比[-]=各基盤のサンプル量[nmol]/地上作

(加水分解無し)

Mita and Kobayashi et al. 2019

6. これまでの成果 曝露サンプルまとめ

	微生物種名 株名 遺伝子型	結果および進行状況	成功基 準達成
微生物	Deinococcus radiodurans R1	0.5mm厚で生存	ST2Mi
8株	D. radiodurans UVS78 ΔmtcA ,ΔuvsE	1mm厚で生存	ST2Mi
	D. radiodurans rec30 ∆recA	1.5mm厚で生存	ST2Mi
	D. radiodurans KH311 ∆pprA	0.5mm厚で生存	ST2Mi
	陸棲藍藻シアノバクテリア	暗所で生存	ST2Mi
	D. aerius TR125	進行中	
	D. aetherius ST316	進行中	
	Schizosaccharomyces pombe	進行中	
有機物	グリシン	残存	ST3Mi
5種	ヒダントイン	残存	ST3Mi
	CAW(模擬星間物質照射実験生成物)	残存	ST3Mi
	イソバリン	進行中	
	エチルメチルヒダントイン	進行中	

捕集パネル初期分析

今仁順也、佐々木聰、奥平恭子、小澤宇志、尾田佳至朗、河口優子、癸生川陽子、

滝沢直美、田端誠、土山明、矢口勇一、

横堀伸一、橋本博文、山岸明彦、

たんぽぽ初期分析(TNPP-ISAC)チーム

ASTROBIOLOGY JAPAN

ann

ISSきぼう曝露部搭載「たんぽぽ捕集パネル」への、 宇宙固体微粒子の衝突数の推定値

(Kurihara, et al.,2014)

地球帰還した捕集パネル・エアロゲル

Aerogel Holder Tabata et al. 2018

INP-2017101

衝突痕候補検出・位置同定 (表面100ミクロン以上の特徴点全て)

245倍再訪問・ 三次元情報取得後の最終判定例

F (False)

Bar

Fiber

Aerogel Fragment

Block (irregularly shaped)

U (Undefined) =>Additional info (e.g., material) needed

T (True)

No clear entrance, surface only, short length, no bursts/twists, conchoidal fractures, etc. Hypervelocity Impact Track/Burst/Feature

Particle: >100 µm (Big) Density: high Impact velocity: high

宇宙面 (メテオロイド起源、短トラック型) 比較的短いトラックの内壁、末端に微粒子破片

73

4. これまでの成果

超高速衝突痕 宇宙面(バースト型) 空隙率が高く、脆いフラクタル微粒子? 彗星・炭素質小惑星起源であれば、 有機物含有?

75

ガラスニードル自動掘削

4. これまでの成果

4. これまでの成果

Mesarement of space debris

• Crater on aluminum casings will be optically inspected.

6. 今後の予定

まとめ マサパンスペルミアを 支持する結果

曝露試料分析の継続 衝突痕微粒子分析 第二回目、第三回目の 試料分析

TNP-2017101