Georhvsical Fluid Dyhamics:

from the Lab, up and down!

Henri-Claude Nataf

Univ Grenoble Alpes / CNRS
Grenoble, France

Fluid Dynamics in Earth and Planetary Sciences
! UNIVERSITE Kyoto, November 27-30, 2018
< Grenoble

< Alpes




Lecture 2 ‘
Mantle convection

and plate tectonics

FDEPS
Kyoto, November 27, 2018



ouftline

2. Mantle convection and plate tectonics
2.1. The blinding evidence for plate tectonics
2.2. Mantle convection with T-dependent viscosity
2.3. The mantle plume paradox
2.4. Seismic tomography

2.5. Plate tectonics: where, when and how?

(2) Mantle convection and plate tectonics FDEPS 2018, Kyoto H-C Nataf 3/55



2.1. The blinding evidence for plate tectonics

(2) Mantle convection and plate tectonics FDEPS 2018, Kyoto H-C Nataf 4/55



The many signatures of plate tectonics today

* a survey of geophysical observables compiled at http://jules.unavco.org/
Voyager/Earth
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Ocean Floor Age

UNAVOD 2016

(2.1) The blinding evidence for plate tectonics FDEPS 2018, Kyoto H-C Nataf 11785



o

—

(2.1-) The blinding evidence for plate tectonics FDEPS 2018, Kyoto H-C Nataf



(2.1) The blinding evidence for plate tectonics FDEPS 2018, Kyoto H-C Nataf



Topography
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a zoom on Jaran and Kamchatka

Topography Free-air gravity Seismicity focal mechanisms
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Questions...

 What happens to plates sinking into the mantle?
 What is the origin of hotspots?

* How does subduction initiate?

 When did plate tectonics begin?

 Why is it not seen on other planets?
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2.2. Mantle convection with T-dependent viscosity
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T-dependent VISCOSITY

* The viscosity of the constituents of the mantle varies strongly with
temperature. The viscosity of the cold lithosphere is several orders of
magnitude larger than the viscosity of the hot asthenosphere.

 What are the consequences of this fundamental property of mantle
convection?

* |et’s look at a very simple problem: the linear stability of Rayleigh-Bénard
convection in a fluid with a viscosity v varying with temperature T as:
UT) = v, e 7o)

* One can solve the linear stability of this (hon-Boussinesq) problem, but we
first look at it with heuristic arguments.
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A simple convection problem

* Considering the sketch we have seen this morning, we start from the
conductive solution. Therefore the temperature dependence of viscosity
: z
becomes a depth dependence: I/(Z) =y, eyAT y

T Vb

e (Can convection develop in a sublayer between 0 and z, where viscosity Is
lower than at d?
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Convection in a sublaver

* Let’'s compute the Rayleigh number Ra; of this sublayer, picking the
viscosity at mid-height as its ‘representative viscosity’;

Z
U(z/2) = v, e?> 2
aATgd’ . Z
KLy, d 8
Then: Ra. = Ra, 7* e, which reaches a maximum for Z,, = F if
r

Inr, > 8 < r,>e®=2981

The viscosity ratio across this sublayer is always e8 = 2981.
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Critical Ravleigh number with T-dependent viscosity

* |Indeed, if we compute the actual critical Rayleigh number Rac (still defined
using viscosity at mid-height) as a function of viscosity ratio r,, we get:

10 ] 1 |

viscosity law

exponentia for real fluids
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Stagnant lid

* Once convection is restricted to a lower sublayer, the top part acts as an
motionless conductive lid. Therefore, if we have the convection solution
for the sublayer, we can easily extrapolate to the whole layer, and to any
larger layer but by adding more viscous material at the top:
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Staghant lid at the convection threshold

Richteretal, 1983 | o This works well indeed, as demonstrated by the

velocity eigenfunctions for linear instability at 3
different viscosity ratios (104, 106 and 108), plotted
using a stretched coordinate

Inr,

3

T

7' =12
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Stagnhant lid for develored convection

 The advantage of this approach is that can be generalized to other
viscosity laws and to developed convection, focusing on the
horizontally-averaged temperature profile.
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Measuring horizontally-averaged temperature profiles

 Measuring the horizontally-averaged temperature profile in actual

laboratory experiments: | _
platinum wire

) : H
Lj/ calipers —_ |
e p— " - = =
- = k=
1 [ - P
. bottom view of the
B B e s B b top plate
side view Richter et al, 1983
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The offset of interior temperature in Laboratory experiments

 Experimental horizontally-averaged temperature profiles with Ra12 ~ 103,
and three different viscosity ratios:

- 05

. Richter et al, 1983

0 05 1
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Two remarks

 [wo important conclusions:

1) Mantle convection beneath a stagnant lid is really what we expect and it
seems that this situation prevails for most planets (+ volcanism). Unless
the lid viscosity is low enough to allow for convective motions.

2) The viscosity ratio across the lower boundary layer is self-limited to
values of the order of 10 only.
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2.3. The mantle plume paradox
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Hotspofs

 Plates don't get it all: intra-plate ‘hotspot’ volcanism appears to be an
additional key component of mantle dynamics.

* As pointed out by Wilson (1961), they appear to correspond to heat
sources that do not move while plates pass above them.

 Hawalii is the best known hotspot, and the track it left on the Pacific plate
IS Impressive.
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Geoprhysical and geochemical sighatures of hotspots

 Hawali is the best known hotspot, but geophysicists and geochemists

have identified many more hotspots. Radiogenic signatures of hotspots.
EMI

EM2

Samoa

Tnstan
| ) Cape Verde

Cameroon Line

St Helena

‘\ Mangata
tOlo

DMM HIMU
Figure 10.30. Three dimension plot of ¥Sr/*Sr, "*Nd /'“Nd,

Buoyancy flux of hotspots, determined from the and ™Pb/™Pb. Most oceanic basalt data plot within a tet-

rahedron defined by the composition of EMI, EMII, HIMU,

' com nts. anic islands and island chains
swell they produce beneath the lithosphere. e apcouets, Ocuinic Mianls anil and Shae
point toward a focal zone (FOZO) at the base of the tetrahe-

dron. Adapted from Hart et al (1992).

from Sleep, 1990
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Jason Morgan’s mantie plume model

* The prevailing explanation is the ‘mantle plume’ model of Morgan (1972),
iIN which some hot plume originates from a boundary layer deep in the
mantle, where convective velocities would be much slower than plate
velocities.

* An additional clue comes from noting that the eruption of several large
igheous provinces (LIP) coincide with the start of a hotspot track, and
often also to the breaking of the overriding plate.

* A well known example is the La Réunion hotspot whose birth seems to
date back to the Cretaceous-Tertiary boundary (65 Ma ago), when the
huge Dekkan Traps were emplaced.
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Dekkan Traps and La Réunion hotspot
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Cavity plume

* This prompted the idea that mantle
plumes could be thermal cavity
plumes with a large temperature-
dependent viscosity ratio,
characterized by a large head fed by
a narrow tail (Courtillot et al, 1986;
Richards et al, 1989; Griffiths &
Campbell, 1990).

 Experiments indeed show this
behaviour when the hot injected fluid
Is some 100 times less viscous than
Its surrounding.
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The mantle plume paradox 1

* The viscosity ratio required to build thermal cavity plumes with a large
head and a narrow tail appears to be one order of magnitude larger
than the viscosity ratio built by T-dependent convection across its lower
boundary layer.

» How can we solve this paradox?
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Possible solutions to the mantle plume paradox

(1) Because of plate tectonics, some oceanic crust is returned to the mantle
and accumulates at its base. It contains more heat-producing radioactive
iIsotopes than the surrounding mantle. Therefore, it heats up gradually, and
after a time of the order of a billion years, it forms a large buoyant plume.

This scenario, put forward by Hofmann & White (1982) also explains some
geochemical properties of hotspot lavas.

(2.2) The mantle plume paradox FDEPS 2018, Kyoto H-C Nataf
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Possible solutions to the mantle plume paradox

50 A

(2) Because of plate tectonics, the cold ; Nataf, 1991
|
|

subducting slab spreads above the hot om) |

bottom, thereby increasing the temperature ;
drop and viscosity ratio across the lower @ riid o6
boundary layer. |

(Z) moving oD

:

g

|
o

This shows up (partly) in the experimental - 7 . | TeC)
horizontally-average temperature profile of  Fig. 5. Preliminary vertical profiles of horizontally averaged
T_dependent convection with a moving temperature. The overall viscosity vanation s 100, Profile 1 is

with a fixed rigid top boundary. Profile 2 was obtained with a
moving top boundary that forced subduction. The velocity of
the lid i approximately five times less than the maximum
convective velocity., Note the lower temperature above the
bottom boundary in profile 2. The shift towards high tempera-
ture at mud-depth for profile 2 1s a bias of the averaging
procedure. It disappears for larger velocities and /or larger
ViSCOSily ratios.
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70SSIDIe SOIUTIonS 10 The mantie Piume Paradox

B,=0  0.21 0.47 0.54 0.73
(3) A dense layer at the base P® d % ¢
of the mantle is entrained - L Y. /A t 7 q
by a thermal plume. : | ' 'w
Depending on the density
and viscosity ratios, plumes

can take different styles. | ! ¢ ! ¢ . j AK
. " -—m_“___ =

)

In the experiments of
Kumagai et al (2008), the

fluid contains

thermochromic liquid
crystals, which mark the ~
positions of isotherms.
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2.4. Seismic tomography
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Ancestors’ global models of the urpper mantle...
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A recent global model of the urpPermost mantle

100 km B 150 km

Debayle et al, 2016

T T ——

-10 -5 5 10

from 1,359,470 Rayleigh waves, up to the fifth overtone!
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A high-resolution global model revealing slab behaviors

Fukao & Obayashi (2013)
conducted the most thorough
and impressive survey of
subducting slab behaviour,
from cross-sections across
their high resolution P-wave
velocity global model. It was
obtained from more than 10
million travel-times, using a
finite-frequency extended ray
theory.

slow 1.5% N T 1.5% fast

Figure 3. Successive slices of slab images. (top, left) Across the northern Honshu arc along profiles F u kao & Ob ay aSh J ’ 2 O 13

A—E shown in the top left map. (bottom, right) Across the northern Bonin arc along profiles F—J shown

in the bottom right map. The color scale is+1.5% in P wave velocity perturbation (blue =positive,
red =negative). White dots indicate earthquake hypocenters within a band 50 km wide on both sides
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A high-resolution global model revealing slab behaviors

Their study reveals that
many slabs flatten out and
stagnate either above or
around the 660 km
discontinuity, or at depth of
about 1000 km. Only a few
slabs penetrate deep into
the lower mantle.

Fukao & Obayashi, 2013

slow 1.5% N I 1.5% fast

Figure 16. Successive slices of slab images. (top, left) Across the northern part of the Central America

arc along profiles A—E shown in the left top map. (bottom, right) Across the middle part of the Central
America arc along profiles F—J shown in the right bottom map. Other features are the same as those

described in Figure 3.
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What about plumes in the lower mantle?

* The resolution of seismic tomography in the lower mantle is not as good
as in the upper mantle. Mantle plumes are expected to be rather narrow
features (diameter ~100-400 km) with a rather modest temperature
excess (~200-400 K), yielding seismic velocity anomalies of ~2-5%.

* Therefore, it seems difficult to image mantle plume conduits in the lower
mantle. Nevertheless, several teams have developed tools for addressing
this issue. | will present three of them.
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Scattering tfomograprhy

Narrow velocity anomalies SVD - 75 eigenvalues
scatter seismic waves. e
, station/ Goherent scattering from a
' vertical structure, such as a
plume, can produce a sizable
scattered wave. Scattering
tomography stacks waves
that can be scattered from a

24

22

20

— - ~ /
§ tarthquake -« 'scatterer

L=y
vy

18

given location. " 158 -156 -154 -152 -150
-36 plume [ " T 36 plume
A strong slow anomaly was )
Ay detected that way, north- Rawall
I west of Hawai.

Ji Ying & Nataf, 1998
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Finite frequency P-wave tomograrhy

 Wavefronts ‘heal’ when travelling in a low-velocity region, thereby
smearing out the travel-time anomaly it produces. Montelli et al (2004)
used a finite-frequency theory, which goes beyond classical ray theory,
and produced a global map of the lower mantle. Integrating over the full
depth of the lower mantle to emphasize vertical structures such as

plumes, they detected several slow anomalies that seem to be related to
known hotspots.

 The amplitude of these anomalies is stronger than expected for usual
thermal mantle plume models.
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Fig. 1. Vertical average over the lowermost 1000 km of the mantle of the relative velocity perturbation dv,/v,. The averaging emphasizes features that
are continuous with depth. Map has been wrapped around to have complete views of both the Atlantic and the Pacific oceans.
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Finite frequency P-wave tomograrhy

 Wavefronts ‘heal’ when travelling in a low-velocity region, thereby
smearing out the travel-time anomaly it produces. Montelli et al (2004)
used a finite-frequency theory, which goes beyond classical ray theory,
and produced a global map of the lower mantle. Integrating over the full
depth of the lower mantle to emphasize vertical structures such as

plumes, they detected several slow anomalies that seem to be related to
known hotspots.

 The amplitude of these anomalies is stronger than expected for usual
thermal mantle plume models.
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Full waveform tomograrhy

SEMUCB-WMT1 at 2,800-km depth
More recently, French &

Romanowicz (2015)
produced a global
mantle tomographic
model, using a method
that partly accounts for
scattered waves. They
find large slow anomalies
that correlate with
several hotspots.

® ‘Primary’ plumes O Somewhat resolved
© Clearly resolved © Not associated with any hotspot

French & Romanowicz, 2015
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Full waveform tomograrhy

500 km

Approximate
lines of section

S8SSS
b N*W‘N-

Depth (km) oV SV, (%)
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Two remarks

1. None of the mantle plume ‘detections’ presented above has yet received
a large consensus.

2. All these studies show much larger anomalies than expected for
‘'standard’ thermal plumes (another plume paradox!).
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2.5. Plate tectonics: where, why and how?
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