Geophysical Fluid Dynamics: from the Lab, up and down!

Henri-Claude Nataf
Univ Grenoble Alpes / CNRS
Grenoble, France

Fluid Dynamics in Earth and Planetary Sciences
Kyoto, November 27-30, 2018
Lecture 1
Overview and basic concepts
Overview

1. Basic concepts
2. Mantle convection and plate tectonics
3. Core dynamics and the geodynamo
4. Turbulence in planetary cores
5. The formation of planets
Laboratory experiments
1. Basic concepts
1. Basic concepts

1.1. Equations

1.2. Dimensional analysis

1.3. Convection and pattern formation

1.4. Earth’s interior
1.1. Equations
• Newton’s laws of mechanics
• Maxwell’s equations of electrodynamics
• Continuum mechanics: internal stress, electric current, etc
• Thermodynamic principles: Fourier’s law, second law, etc
• Equations of state: \(\rho(P, T, \chi) \)
• Transport properties: \(\nu, \kappa, \sigma, \) etc
Our set of equations

- Navier-Stokes or momentum equation
- Heat or entropy equation
- Magnetic induction equation (from Maxwell equations)
• mass conservation equation:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \]

• Navier-Stokes or momentum equation

\[\rho \frac{D \mathbf{u}}{Dt} = \mathbf{f} \quad \text{with} \quad \frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \quad \text{the material derivative} \]

Density \(\rho \), fluid velocity \(\mathbf{u} \), forces \(\mathbf{f} \).
• All material properties are uniform and constant - except density in the buoyancy force, in which its temperature variation is retained:

$$\rho(T) = \rho_0 \left(1 - \alpha(T - T_0)\right)$$

where α is the coefficient of thermal expansion
Boussinesq Navier-Stokes equation

• continuity equation for an incompressible fluid:

\[\nabla \cdot \mathbf{u} = 0 \]

• Navier-Stokes equation for a fluid in a rotating frame within a gravity field and a magnetic field

\[
\rho_0 \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) + 2\rho_0 \Omega \times \mathbf{u} = -\nabla P + \rho_0 \left(1 - \alpha(T - T_0) \right) \mathbf{g} + \mathbf{j} \times \mathbf{B} + \mu \nabla^2 \mathbf{u}
\]

Frame rotation vector \(\Omega \), pressure \(P \), gravity \(\mathbf{g} \), electric current density \(\mathbf{j} \), magnetic field \(\mathbf{B} \), dynamic viscosity \(\mu \).
Heat equation in the Boussinesq approximation

\[\rho_0 C_P \left(\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla)T \right) = \underbrace{H}_{\text{production}} + \underbrace{k \nabla^2 T}_{\text{diffusion}} \]

Heat capacity \(C_P \), heat production per unit mass \(H \), thermal conductivity \(k \).
Maxwell equations

- Gauss law for magnetism \(\nabla \cdot \mathbf{B} = 0 \)

- Faraday’s law of induction \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \)

- Ampère’s law \(\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \)

- Ohm’s law \(\frac{\mathbf{j}}{\sigma} = \mathbf{E} + \mathbf{u} \times \mathbf{B} \)

Electric field \(\mathbf{E} \), magnetic permeability \(\mu_0 \), electric permittivity \(\varepsilon_0 \), electric conductivity \(\sigma \).
• One can neglect the displacement current $\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} = \frac{1}{c^2} \frac{\partial E}{\partial t}$ when the fluid velocity u is very small compared to the speed of light c: this is the magnetohydrodynamics (MHD) approximation.

• Combining the four preceding equations, one gets the magnetic induction equation in the MHD approximation (assuming uniform electric conductivity)

$$\frac{\partial B}{\partial t} = \nabla \times (u \times B) + \eta \nabla^2 B$$

where $\eta = 1/\mu_0 \sigma$.

Magnetic diffusivity $\eta = 1/\mu_0 \sigma$.
1.2. Dimensional analysis
Dimensional analysis: what for?

• figure out the **dominant terms** in our equations

• reduce the number of relevant parameters —> **dimensionless numbers**

• permit **reduced scale laboratory experiments**

• use identical mathematical tools for different physical problems
Consider the magnetic induction equation:

\[
\frac{\partial B}{\partial t} = \nabla \times (u \times B) + \eta \nabla^2 B
\]

Let the flow be at a typical length-scale \(L \), with a typical velocity \(U \) (from which we derive a typical time \(T = L/U \)). Let’s take \(B \) as a typical magnetic scale (though we don’t even need it).

Rewriting our equation in terms of dimensionless variables \(u^* = u/U, \ t^* = t/T \), etc, we get:

\[
\frac{\partial B^*}{\partial t^*} = \nabla^* \times (u^* \times B^*) + \frac{\eta}{UL} \nabla^{*2} B^*
\]
• One dimensionless number appears in our dimensionless equation: the
magnetic Reynolds number:

\[Rm = \frac{UL}{\eta} \]

• We have reduced the number of relevant parameters.

• To observe the same physics, it suffices to keep this dimensionless
 number identical between two systems with otherwise differing \(U, L \) and
 \(\eta \).
The Rayleigh-Bénard (R-B) problem: what controls the formation of convection cells in a fluid sandwiched between two horizontal plates, the lower one being at a higher temperature than the upper one?

\[\rho, \nu, \kappa, \alpha, g, T_0, d, T_0 + \Delta T \]
In the Boussinesq approximation, the equations governing this problem can be written as:

\[
\begin{aligned}
\nabla \cdot \mathbf{u} &= 0 \\
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{1}{\rho} \nabla P + \left(1 - \alpha (T - T_0)\right) \mathbf{g} + \nu \nabla^2 \mathbf{u} \\
\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T &= \kappa \nabla^2 T
\end{aligned}
\]

with \(\nu = \mu/\rho\) the kinematic viscosity and \(\kappa = k/\rho C_P\) the thermal diffusivity.
• Introducing the hydrostatic pressure P_H, whose gradient is ρg, and choosing the following scales:

$$u = \frac{\kappa}{d} u^*, \quad t = \frac{d^2}{\kappa} t^*, \quad T = T_0 + \Delta T T^*, \quad P = P_H + \frac{\rho \kappa \nu}{d^2} P^*$$

• and multiplying the momentum equation by $d^3/\kappa \nu$, we get the following dimensionless equations:

$$\left\{ \begin{array}{l}
\frac{\kappa}{\nu} \left(\frac{\partial u^*}{\partial t^*} + (u^* \cdot \nabla^*) u^* \right) = - \nabla^* P^* - \frac{\alpha \Delta T g d^3}{\kappa \nu} T^* \hat{z} + \nabla^{*2} u^*

\frac{\partial T^*}{\partial t^*} + (u^* \cdot \nabla^*) T^* = \nabla^{*2} T^*
\end{array} \right.$$
which yields **two** dimensionless numbers this time:

The Rayleigh number: \[Ra = \frac{\alpha \Delta T g d^3}{\kappa \nu} \]

The Prandtl number: \[Pr = \frac{\nu}{\kappa} \]

• In principle, in order to obtain similarity between a system such as the Earth’s mantle, say, and a lab experiment, we need to keep these two numbers identical.

• However, in the Earth’s mantle, the Prandtl number is enormous (\(Pr \approx 10^{23} \)). This indicates that the inertial term can be neglected altogether. Therefore, one only needs to keep the Rayleigh numbers identical, as long as the Prandtl number is large enough as well in the experiment.
• What we have just seen works well when we know the governing equations, and if we make the right guesses for the typical scales.

• A more general approach is brought by the ‘Pi’ theorem of Buckingham (1914). Even when governing equations are unknown, there are some links between the relevant parameters of a physical experiment. In particular any correct physical equation must be dimensionally homogeneous.
« Conclusion. — A convenient summary of the general consequences of the principle of dimensional homogeneity consists in the statement that any equation which describes completely a relation subsisting among a number of physical quantities of an equal or smaller number of different kinds, is reducible to the form

\[
\psi (\Pi_1, \Pi_2, \ldots, etc.) = 0
\]

in which the \(\Pi \)'s are all the independent dimensionless products of the form \(Q_1^x, Q_2^y, \) etc. that can be made by using the symbols of all the quantities \(Q \).

While this theorem appears rather noncommittal, it is in fact a powerful tool and comparable, in this regard, to the methods of thermodynamics or Lagrange’s method of generalized coordinates. It is hoped that the few sample illustrations of its use which have been given will prove interesting to physicists who have not been in the habit of making much use of dimensional reasoning; but if this paper merely helps a little toward dispelling the metaphysical fog that seems to be engulfing us, it will have attained its object. »

\textit{Buckingham, 1914}
1. **Guess** and decide what might be the n relevant physical quantities.

2. Count the number k of **fundamental dimensions** (e.g., length, time, etc) that come into play.

3. Then, $p = n-k$ is the number of independent dimensionless products Π_i one can form.

4. One can **calculate** these p dimensionless products by choosing k relevant ‘fundamental’ physical quantities (out of n), covering the k fundamental dimensions, and expressing the remaining $n-k$ relevant physical quantities as products of polynomials of the fundamental physical quantities.

Buckingham’s recipe

(1.2) Dimensional analysis
1. Choose \(n = 7 \) relevant physical quantities:

<table>
<thead>
<tr>
<th>physical quantity</th>
<th>(\Delta T)</th>
<th>(v)</th>
<th>(k)</th>
<th>(a)</th>
<th>(g)</th>
<th>(d)</th>
<th>(C_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>K</td>
<td>m²s⁻¹</td>
<td>m²s⁻¹</td>
<td>K⁻¹</td>
<td>ms⁻²</td>
<td>m</td>
<td>m²s⁻²K⁻¹</td>
</tr>
</tbody>
</table>

2. There are \(k = 3 \) fundamental dimensions (length, time, temperature).

3. Let’s pick \(d \), \(a \), and \(g \) as our \(k = 3 \) fundamental physical quantities.

4. We obtain \(p = 4 \) dimensionless products \(\Pi_i \) by expressing the 4 remaining physical quantities \(\Delta T, v, k, \) and \(C_P \) as a function of these 3.
We thus obtain:

\[\Pi_1 = \alpha \Delta T \quad \Pi_2 = \frac{\nu^2}{gd^3} \quad \Pi_3 = \frac{\kappa^2}{gd^3} \quad \Pi_4 = \frac{C_P}{\alpha gd} \]

which we can easily recombine into 4 more classical dimensionless numbers:

\[Ra = \frac{\alpha \Delta T gd^3}{\kappa \nu} \quad Pr = \frac{\nu}{\kappa} \quad Di = \frac{\alpha gd}{C_P} \quad \epsilon = \alpha \Delta T \]

The last two numbers did not appear in our earlier derivation because we used the Boussinesq approximation. The dissipation number Di measures the effect of compression on density and controls viscous dissipation.
1.3. Convection and pattern formation
• Let’s write again our dimensionless equations for Rayleigh-Bénard convection:

\[
\begin{align*}
Pr^{-1} \left(\frac{\partial u}{\partial t} + (u \cdot \nabla)u \right) &= -\nabla P - Ra T \hat{z} + \nabla^2 u \\
\frac{\partial T}{\partial t} + (u \cdot \nabla)T &= \nabla^2 T
\end{align*}
\]

• Let’s simplify them further, assuming \(Pr \gg 1 \) :

\[
\begin{align*}
-\nabla P - Ra T \hat{z} + \nabla^2 u &= 0 \\
\frac{\partial T}{\partial t} + (u \cdot \nabla)T &= \nabla^2 T
\end{align*}
\]
An obvious solution of these equations is \(u = 0 \) and \(T = T_0 + \frac{z}{d} \Delta T \)

and this would be the solution if our equations were linear, which is not quite the case because of the \((u \cdot \nabla)T \) term.

Non-linear equations can admit an infinite number of solutions.
If we start from this stationary conductive solution and add a small velocity perturbation u, it will advect the isotherms.

The linear stability analysis, pioneered by Lord Rayleigh (1916), allows to test whether such a perturbation will grow or decay (see the excellent presentation by Prof Chris Jones in last’s year FDEPS).

It is found that at least some perturbations will grow once the Rayleigh number Ra is higher than some critical value Ra_c.

$Ra_c = 1708$ for rigid isothermal boundaries.
• In order to conserve mass, the velocity perturbation has to advect the isotherms **up** in some places, and **down** in other places, inevitably leading to **pattern formation**.

• Let’s look at some convection patterns from the Lab and elsewhere.
Convection in a centrifuge

\[Pr = \frac{\nu}{\kappa} = 10^6 \]

\[Ra = \frac{\alpha \Delta T \gamma d^3}{\kappa \nu} \]

with

\[\gamma \approx 1000 \text{ g} \]

(1.3) Convection and pattern formation

Weijermars, 1988
Rayleigh-Bénard convection cells

Horizontal temperature gradient isocontours

Vertical temperature gradient isocontours

(1.3) Convection and pattern formation

Nataf & Richter, 1982
An experimental visualization technique: differential interferometry

Nataf et al, 1981
(1.3) Convection and pattern formation

Kahn

White, 1982
Patterns are a great source of inspiration for artists, but often it’s just as well to average them out and get the **horizontally averaged temperature profile** $\bar{T}(z)$. It usually looks like this:
1.4. Earth’s interior
1.4. Earth’s interior

1.4.1. Structure

1.4.2. Composition

1.4.3. Energy
1.4.1. Structure of the Earth’s interior
seismological radiography of the Earth

(1.4) Earth’s interior

Global stacking three-component long period & broadband seismograms

Nishida, 2013

IRIS DMC, 2014

Power spectral densities x10^{-19} [m^2 s^{-1}]
travel-times of seismic waves

Kennett, 2005

AK135 tables

(1.4) Earth’s interior
the Preliminary Reference Earth Model (PREM)

Kennett, 2005

Dziewonski & Anderson, 1981

(1.4) Earth’s interior
Free oscillations (or normal modes) of the Earth

Free oscillations of the Earth excited by the 2011 Tohoku Mw 9.0 earthquake

Spheroidal free oscillations observed in water levels from 43 wells in China.

Torsional free oscillations recorded by a ring laser rotation sensor in Europe.

Rui Yan et al. 2016

Nader et al, 2012

https://saviot.cnrs.fr/terre/index.en.html
Will Mars be the next (and only?) other planet for which we determine the interior structure from seismology?
1.4.2. Composition of the Earth’s interior
A simplified view of the composition of the Earth’s interior

Olivine

\{ wadsleyite, ringwoodite \}

Post-perovskite

Bridgmanite

© Synchrotron Spring-8 The world’s largest radiation facility

图1.地球内部的层构造

従来、下部マントルとD”層はペロフスカイトで構成されていると考えられていたが、今回の研究でD”層のポストペロフスカイトの存在が明らかになった。

(1.4) Earth’s interior

FDEPS 2018, Kyoto H-C Nataf
A simplified view of the composition of the Earth’s interior

Internal structure and major constituent minerals of the earth

Kei Hirose, 2013
1.4.3. Energy from the Earth
46 TW = 46 x 10^{12} W

Jaupart et al, 2015

This looks like a large number, but:

• It’s only 3.7 times the total power consumption of humanity as of 2015.

• It is 3800 less power than what the Earth receives from the Sun.

• It corresponds to an internal production of only 42 W per cubic kilometer.
Where is the heat coming from?

- Continental heat loss: 13-15 TW
- Convective mantle: 35-41 TW
- Core: 5-17 TW

Total: 43-49 TW

Uncertainties are still large!

Jaupart et al, 2015
What is the origin of the heat?

- Secular cooling: 1-29 TW, cooling rate of 7-210 K/Ga
- Radioactive elements: 13-23 TW, ^{238}U, ^{235}U, ^{232}Th, ^{40}K
- Mechanical energy: < 0.1 TW?

Uncertainties are still large!

(1.4) Earth's interior

Jaupart et al, 2015
The disintegration chains of Uranium, Thorium and Potassium produce electron antineutrinos:

\[
{^{238}\text{U}} \rightarrow \ldots \rightarrow \ldots + \bar{\nu}_e
\]

\[
{^{232}\text{Th}} \rightarrow \ldots \rightarrow \ldots + \bar{\nu}_e
\]

These ‘geoneutrinos’ are detected in huge detectors such as the Japanese Super-Kamiokande by the inverse β-decay reaction:

\[
\bar{\nu}_e + p \rightarrow e^+ + n
\]
antineutrinos will help!

It takes several years of events’ collection to detect a few dizains of geoneutrinos!

So far, the results are consistent with geochemical models such as McDonough and Sun (1995), where present-day radioactive sources produce 19 TW of heat.

Great hope rests in on-going installations: Borexino, SNO+… and projects: Hyper-Kamiokande.

(1.4) Earth’s interior

The KamLAND collaboration, 2011
What is the origin of the heat?

- Secular cooling: 1-29 TW cooling rate of 7-210 K/Ga
- Radioactive elements: 13-23 TW ^{238}U, ^{235}U, ^{232}Th, ^{40}K
- Mechanical energy: < 0.1 TW?
- Neutrinos???

(1.4) Earth’s interior

Jaupart et al, 2015