Modeling of streak structure observed by Akastuski

Hiroki Kashimura (Kobe Univ./CPS)

collaborated with

N. Sugimoto, M. Takagi, Y. Matsuda, W. Ohfuchi, T. Enomoto, K. Nakajima, T. M. Sato,

G. L. Hashimoto, T. Satoh, Y. O. Takahashi, and Y.-Y. Hayashi

Acknowledgment: We thank all members of the Akatsuka project. This study is partly conducted under the Earth Simulator Proposed Research Project titled "Simulations of Atmospheric General Circulations of Earth-like Planets by AFES" and the simulations were performed in the Earth Simulator with the support of JAMSTEC. This study is also supported by MEXT as "Exploratory Challenge on Post-K computer" (Elucidation of the Birth of Exoplanets [Second Earth] and the Environmental Variations of Planets in the Solar System).

Venus night-side image taken by Akatsuki IR2 camera

Vertical velocity field produced in our Venus GCM

Planetary-scale streak structures

- White = thin clouds = downward flow?
- Black = thick clouds = upward flow?

- Snapshot of vertical velocity at z = 60 km.
 - White = downward flow
 - Black = upward flow

[m s–1]

0.09

0.06

0.03

0

-0.03

-0.06

-0.09

Our simplified Venus GCM

- Based on AFES = Atmospheric GCM for the Earth Simulator (Ohfuchi et al. 2004; Enomoto et al. 2008)
 - The Earth Simulator is a vector type super computer.
- Basic equation: primitive equations
- Resolution:
 - T159 (~0.75°× 0.75°; 480×240 grids) L120 (Δz ~ 1 km; sigma coord.)
- Simplified Radiative forcing
 - Horizontally uniform Newtonian cooling (Crisp, 1989)
 - Solar heating with a diurnal variation (Tomasko et al., 1980).
- No topography
 No moist processes
- Sponge layers located above 80 km
- Biharmonic horizontal diffusion (∇⁴) with a damping time of 0.01 Earth days for the highest wave number.
- Vertical eddy diffusion with coefficient of 0.15 m²s⁻¹
- Note that planetary-rotation direction is same as the Earth (some figures are rotated to match the real Venus and some are not.)

Stability in the "basic state" for Newtonian cooling (Sugimoto et al. 2013)

Initial state: superrotation

Height [km]

Results | zonal mean zonal wind

Vertical p-velocity | movie (dt = 1h)

 $\leftarrow \text{IR2-nightside image}$

© ISAS/JAXA

OMG.ctl@OMG,z=2E-3

© ESA

Experiments

- To explore the effects of
 - the diurnal heating and
 - the introduced low stability layer (55–60 km, 0.1 K/km),
- we conducted experiments
 - without the diurnal heating (i.e., using zonally averaged heating) and
 - in which the stability is changed to

2.0 K/km and 4.0 K/km

Vertical velocity | movie (dt = 6h)

without diurnal heating

• Synchronized even without the diurnal heating.

Diurnal heating is NOT a reason for the synchronization.

Two Questions arose:

Q1. How are the streak structures synchronized?

- **Q2.** How are the convergence zone formed?
 - Why do they disappear in a high-stability case?

Longitude-time cross-section at lat = -35 (No diurnal heating 0.1K/km) • Pressure deviation from the zonal mean (red-blue) Strong downward flow (green hatch). Mean zonal wind speed (yellow line). z = 70 km65 km 60 km 55 km 50 km 20 18 16 4 Earth days 12 retrograde prograde 0 Propagation speeds of p' and w are same with each other. ω

- They are almost same through these layers (50–70 km),
 though, the zonal mean flow speed increases as height increases.
- [★] $\sqrt{\ln z} > 60$ km, p' is propagating **against** the mean flow (retrograde) $\sqrt{\ln z} < 60$ km, p' is propagating **faster** than the mean flow (prograde)

✓It seems to satisfy unstable configuration for shear instability.

Composite mean along the wave propagation (6.25 days) p' [red-blue], (u', v') [vectors], & w [green hatch] (No diurnal heating 0.1K/km)

65 km height

 Pairs of p' in polar-region is due to the barotropic instability.
 (Sugimoto et al. 2014)

Fig: Nakajima et al. (2012)

Composite mean along the wave propagation (6.25 days) p' [red-blue], (u', v') [vectors], & w [green hatch] (No diurnal heating 0.1K/km) 65 km height

- Pairs of p' in polar-region is due to the barotropic instability. (Sugimoto et al. 2014)
- Equatorial waves in both heights are vertically coupled (have same u' in equatorial region), and these waves would regulate the northsouth symmetry of the streak structure. —Answer to Q1.

- The horizontal structure of the equatorial region is similar to that of the equatorial Rossby wave.
- However, the horizontal distribution of the potential vorticity (PV) is NOT consistent with the Rossby wave.
 - That is, zonal mean PV should monotonically increase;

✓but it is not on 65 km height.

Composite mean along the wave propagation (6.25 days) (No diurnal heating 0.1K/km)

(degrees_north)

 $ω_a$: Absolute vorticity, θ: potential temperature, ρ: density

<u>Composite mean along the wave propagation (6.25 days)</u> (No diurnal heating 0.1K/km)

PV on the isentropic surface is consistent with the Rossby wave theory.
 This wave might propagate along the tilted isentropic surface.

baroclinic instability in the low stability case

20 >

- Self-maintained eddy-induced jet (strong angular velocity in high-latitudes) mechanism works;
 - that would be similar to that in Earth atmosphere.
- The inclined eddies (which are a part of Equatorial Rossby wave) induces convergence zone of the meridional wind, and then the the streak structure of the strong downward flow. —Answer to Q2.

Summary

- Planetary-scale streak structures similar to those observed in a night side IR2 image are reproduced in <u>vertical velocity</u> in our simple Venus GCM, which has dynamics only but has a "low stability layer" (55–60km).
 - Planetary-scale streaks are:
 - strong downward flow, possibly corresponds to thin cloud region.
 - a part of huge spirals extending from the pole to about lat = 30 deg.
 - synchronized in the northern and southern hemisphere.
 - Num. exps. without diurnal heating and changing the static stability of the "low stability layer" are performed; and the results suggest that
 - ✓ Synchronization seems to be caused by the vertically coupled Rossby wave and Kelvin wave in the equatorial region.
 - ✓ Baroclinic instability and inclination of the eddies induced by strong angular velocity, which occurs only in the low stability case, would cause the planetary-scale streak structure.
- Our numerical results, which are obtained by dynamics-only simulation, suggest that the dynamics/circulation is dominant for the planetary-scale streak structure observed in Venus.

Appendix

Low-static stability (0.1 K/km)

lat-θ cross section of PV PV

composite mean

PV@Theta = 870 K zonal mean

PV@Theta = 820 K_{zonal mean}

S 26

Planetary-scale streak structures

Observed in IR2 night-side (calibrated) Produced in our Venus GCM

- White = thin clouds = downward flow?
- Black = thick clouds = upward flow?

- Snapshot of vertical velocity at z = 60 km.
 - White = downward flow
 - Black = upward flow

Fig: © ISAS/JAXA

Planetary-scale streak structures

IR2 night-side (edge-enhancement) Produced in our Venus GCM

- IR radiated from near-surface atmosphere. Thick clouds blocks it.
 - White = thin clouds = downward flow?
 - Black = thick clouds = upward flow?

- Snapshot of vertical velocity at z = 60 km.
 - White = downward flow
 - Black = upward flow

Results | zonal mean zonal wind

Time series of mean zonal wind above the equator

Time mean for last 1 Earth year

Longitude-time cross-section at lat = -35 (No diurnal heating 4K/km)

- Pressure deviation from the zonal mean (red-blue)
- Strong downward flow (green hatch). Mean zonal wind speed (yellow line) z = 70 km 65 km 60 km 55 km 50 km

Composite mean | PV

x mean

Figure 2. Vertical profiles of the prescribed temperature field, $T_0(z)$ (solid line), and the relaxation time of Newtonian cooling, $\tau_N(z)$ (dotted line).

time-zonal mean

time-zonal mean

