2018年2月28日

探査ミッション立案スクール最終報告会

WHole Asteroid Trapping (WHAT) mission

2018年2月28日

探査ミッション立案スクール最終報告会

WHole Asteroid Trapping (WHAT) mission

小惑星の進化から終焉までを捉える.

小惑星の進化から終焉までを捉える.

小惑星の進化から終焉までを捉える.

- YORP効果の測定・実証
- YORP効果による表面進化の痕跡の観測
- 小惑星の内部構造の理解

目標天体: 2006 RH₁₂₀

2007年の地球接近 時の様子 (Wikipedia)

6

1. サイズが小さい(直径 ~ 3m) YORP効果が強く現れる(ライトカーブの存在:不規則な形状). バルクで天体を理解できる(もっと言えば、持ち帰られる).

2. 到達・捕獲しやすい軌道特徴 2028年の接近距離は10L_Dで、対地心速度が特に小さい(~700m/s).

3. 小惑星を捕らえられるチャンスは限られている 2028年の接近を逃すと次の接近は2042年. ただし対地速度は13km/s.

地球周回軌道へ乗せる意義

1. 地上観測による強力なアシスト
 ミッション期間以降も観測が可能である.
 → YORPのような、ゆっくりとした現象で有利
 小さい天体でも観測が容易である.
 → YORPが強く現れると期待できる天体を間近で観測

2. 安定した放射環境でYORP実験ができる 地球周回軌道にいる限り, YORPの境界条件である放射をコントロールで きる(一定の日心距離(1au)を安定に保つことができる).

3. 今後のミッションへ繋ぐことができる

本ミッションで得られた知見に基づく新たなサイエンスを, 容易に確認・ 検証しに行ける環境である(有人探査も可能).

ミッションシーケンスの概要

探査機光学航法への切り替え

2006 RH₁₂₀の*H*:29.5等級 → 眼視光度が6等級となるのは,距離 1.4 万km

天文衛星・地上観測 によるナビゲート

探査機カメラによる ナビゲート

2018/2/27

ミッションシーケンスの概要

Phase 2 軌道遷移フェーズ

- ・能動的な力学応答測定
- 姿勢制御(自転軸制御)
- ・地球周回軌道への遷移
 ✓ 月フライバイ実施

ミッションシーケンスの概要

Phase 3 地球周回フェーズ

- 地表面詳細観測
- 衛星内部観測
- YORP実験
 - ✓ 放射計撮像
 - ✓ 自転速度変化の測定

ミッションシーケンスの概要

Phase 3 Mission schedule			
ミッション期間	ミッション名	推進方法	
2025年	地球出発	H3ロケット	
2026年	地球スイングバイ	地球重力	
2027年	小惑星到達	ホールスラスタ	
2029年	地球周回軌道投入	ホールスラスタ、月スイングバイ	
-			

ミッション要求

ミッション要求	システム要求
周太陽環境での天体特性の測定	小惑星地形の把握
(接触前)	マルチスペクトル画像取得及び
	自転周期・自転軸の測定
	温度分布測定

ミッション要求	システム要求
能動的な天体の力学応答測定	アーム機構による小惑星キャプチャ
天体移動技術の確立	スラスタ噴射に伴う力学応答測定
	(MOI,質量)
	化学スラスタによる自転軸変更
	電気推進による減速ΔV

ミッション要求	システム要求
周地球軌道における	小惑星表面の詳細観測
天体特性の詳細測定	小惑星内部構造測定
放射コントロール下での	地球・小惑星からの放射環境測定
YURP夫帜	角加速度の時間履歴測定

●システム仕様 (Phase1)

システム要求		システム仕様
小惑星地形の把握		レーザ高度計 LIDAR(はやぶさ搭載,
マルチスペクトル画像取得及び	•	50 m-50 kmからの観測)
自転周期・自転軸の測定		可視光-近赤外撮像系(分解能:約1
温度分布測定		mm, 波長フィルタ:clear + 390, 480,
		550, 700, 860, 950 nm, ※はやぶさ
		ONC-WにONC-Tのフィルタホイール
		をつける)
		放射計TIR (はやぶさ2, 3.28 kg)

●キャプチャ機構について:"UFOキャッチャー方式"

2m

捕獲アームは小惑星を包むように 制御する

表面状態を保存するため アーム上のアクチュエータ(8点) で 小惑星を保持する

アクチュエータ部拡大 圧力センザ Ľ ジョイント (2自由度) アクチュエータ仕様: ✓ リニアアクチュエータを アーム腕から伸展 ✓ 表面の圧力センサにより 小惑星表面にかかる圧力を モニタしながら把持する

●キャプチャ機構について:ペネトレイタ+アーム

2018/2/27

●キャプチャ機構について:ペネトレイタ+アーム

●ドッキング機構(トレードオフ)

手法	UFOキャッチャー方式	ペネトレイタ+アーム方式
小惑星の保存性	○(8点支持)	◎(1点支持)
形状・サイズの非依存性	\bigcirc	\bigcirc
表面特性非依存性	\bigcirc	\bigtriangleup
破壊の可能性	\bigcirc	\bigtriangleup

ドッキングの重要性から両機構を持った冗長系とする どちらが良いかは小惑星に近づき判断する ペネトレータ挿入可能かどうかが1つの指標 ● 天体移動技術について
 ✓ 将来のスペースガード,資源採掘に
 応用するための基礎技術

• 化学スラスタによる自転軸変更

自転軸の向きを**90**°変更する場合を考える (ワーストケース)

推力:80N(化学スラスタ20Nx4) 噴射時間:1s 衛星半径:2m

慣性モーメントI=2/5 MR²ω²=12,000

小惑星に生じる角速度変化量⊿ω=0.017 rad/s →小惑星が90度回転するのに約10分

化学スラスタの燃料消費量は非常に小さい

2018/2/27

• 電気推進による減速∆V

ΔVスラスタ:ホールスラスタ (ETS-9使用機:400mN, 6kW with *ṁ* =30 mg/s)

小惑星の状態:大きさ3[m],密度3[*g/cm*³] 質量80[ton],初速度700[m/s]

✓ 軌道変更に必要な時間 推進剤流量は、30mg/sであり、1.6tonの推進剤を使い切るのに必要 な時間は、1600/(30/10^6)~1年

※小惑星が予想以上よりも重い場合,月軌道半径よりも高い高度(最大200万km)の遷移にする

●システム仕様:(Phase3)	
システム要求	システム仕様
小惑星表面の詳細観測 小惑星内部構造測定 地球・小惑星からの放射環境測定 角加速度の時間履歴測定	 可視光-近赤外撮像系 (Phase1と同じ) レーダーサウンダ (かぐや、HF帯) 放射計TIR (はやぶさ2, 3.28 kg)
	LIDARのレーザを反射する反射鏡 (ミラーボール)を小惑星表面 に設置

ミッション制限条件

考えられるミッション障害

- 小惑星の温度@1au
 270 K: 衛星側に断熱材を設ける
- 小惑星が重すぎる
 鉄だった場合は<u>⊿</u>∨が足りない:より高い軌道に入れる
- ・小惑星の帯電

衛星側に避雷針を設ける 電荷測定を行うことができるかもしれない

●サクセスクライテリア

シナリオ	ミッション概要	サクセス クライテリア
	小惑星地形の把握	minimum
Phase1: 小惑星観察	マルチスペクトル画像取得及び 自転周期・自転軸の測定	
	温度分布測定	Full
	アーム機構による小惑星キャプチャ	
	スラスタ噴射時に伴う力学応答測定	
小惑星の軌道変更	化学スラスタによる自転軸変更	
	電気推進による減速∆∨	
	小惑星表面の詳細観測	
Phase3:	小惑星内部構造測定	
る観察	地球・小惑星からの放射環境測定	
	角加速度の時間履歴測定	
Future study	サンプルリターン	Extra

フューチャーミッション

- 長時間にわたる地上観測
- 自転プロパティのさらなる精密測定
- ・ 興味のある領域のSR
- 掘削・切断による内部探査

有人探査 を見据えたミッションプランも構築可能!

●まとめ

- 1.小惑星の進化から終焉までを捉えるミッションを定義した。
- 2.小惑星2016RH₁₂₀を捕獲し、地球周回軌道に移動するミッションを立案した。

3.地球軌道上で小惑星を用いた実験を行うことを計画した。

References

- 船木+(2015):Laboratory Testing of Hall Thrusters for Allelectric Propulsion Satellite and Deep Space Explorers, JPC2015
- H3ロケット基本設計結果について
 http://fanfun.jaxa.jp/jaxatv/files/20160720 h3.pdf
- JPL Small-Body Database Browser (2006 RH120) <u>https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2006%20RH120</u>
- JPL Small-Body Database Browser (2017 SV19) https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2017%20SV19;old=0;orb=0 ;cov=0;log=0;cad=1
- 諸田+(2015)「火の鳥「はやぶさ」未来編その8 ~ONC地 形観測から探る小惑星の力学進化~」日本惑星科学会誌

Appendix

バックアップミッション

地球近傍小惑星 2017 SV₁₉の探査

	2017 SV ₁₉	2006 RH ₁₂₀
最接近距離	45.6万 km	39.0万 km
最接近時対地心速度	0.698 km/s	0.785 km/s
最接近時刻	2029/11/24 13:17	2028/10/09 03:46
サイズ	25 - 55 m	~ 3 m

2006 RH₁₂₀並みの低エネルギー突入.

ただし,2006 RH₁₂₀よりもサイズが大きいため 岩塊をつまんで地球周回へ向かう.

向井先生からの課題への回答

隕石との違い

 小惑星の物理状態が維持されている
 3m級の小惑星は地上に到達せず, 隕石として見ることができない

一つの小惑星に着目

- 1. YORP効果が起こる小惑星の初観測
- 2. YORP効果を強く体現している小惑星 を見ることで実態を明らかにする