Kepler's Multiple Planet Systems

TITech & Kobe Univ. February 2018

Jack J. Lissauer NASA Ames

Outline

Solar System & Exoplanets *Kepler* Mission *Kepler* planets and planetery systems Principal *Kepler* findings *K2* & *TESS*

Earth-trailing heliocentric orbit

Planets in the Solar System

TECHNIQUES FOR FINDING EXTRASOLAR PLANETS

•	Method	Yield	Size Limit	Status
	Pulsar Timing	<i>m/M</i> ; τ	Lunar	Successful (3+~3)
\checkmark	Radial Velocity	<i>m</i> sin <i>i</i> ; τ	super-Earth	Successful (~700)
	Astrometry Ground: Space:	<i>m</i> ;τ;D _s ;	<i>a</i> Jupiter sub-Jupiter	Ongoing Ongoing - <i>GAIA</i>
	Transit Photometry Ground Space, 27 cm Space, 1 m	<i>Α</i> ; τ ; sin <i>i</i> =	1 Neptune sub-Neptune Mercury	Successful (300) <i>CoRoT</i> (~30) <i>Kepler</i> (>2000 + >2000)
	Microlensing: Ground	f(<i>m,M,r,D</i> _s ,	<i>D_L</i>) super-Earth	Successful (>50)
	Direct Imaging Ground Space	albedo*A;	τ ; <i>D_s ; a ; M</i> Jupiter Earth	Successful (>30) Being studied

time

Josh Pepper

Kepler Mission Goals

Explore the structure and diversity of extrasolar planetary systems

- Determine the <u>frequency of terrestrial planets in or near</u> <u>the habitable zone</u> of a wide variety of spectral types of stars;
- 2. Determine the distributions of **size** and **semi-major axis** of these planets;
- 3. Estimate the frequency and orbital distribution of planets in **multiple-star systems**;
- 4. Determine the distributions of semi-major axis, albedo, size, mass and density of short-period **giant planets**;
- 5. **Identify additional members** of each photometrically-discovered planetary system using complementary techniques;
- 6. Determine the **properties of those stars** that harbor planetary systems.

SPACECRAFT & INSTRUMENT

Large focal plane: 94.6 million science pixels

42 science CCDs, 2 channels each

4 fine guidance sensor (FGS) CCDs

CCDs controlled at -85C, Readout electronics at room temperature

Transit Light Curves

Kepler Planet Candidates & Their Stars

New Kepler Planet Candidates

Common False Positives

Kepler Planets As of February 27, 2012

Kepler found a wide diversity of planets and planetary systems

Kepler-9b,c

Kepler-9 b,c: Transit Timing Variations

Transit timing - Planet perturbations

Kepler-9 models without interactions give poor fits

Models with planets affecting each other give good fits

Kepler's First Rocky Planet: Kepler-10b

Kepler is giving us new knowledge about the frequency of near Earth-size planets.

Kepler-10

10 b: R = 1.4 R_{Earth}, M = 4.6 M_{Earth}, P = 0.8 days 10 c: R = 2.2 R_{Earth}, M < 20 M_{Earth}, P = 45 days

Kepler-11

A really cool system with 6 transiting planets

Kepler-11 Planets

Correct sizes relative to star

(Dan Fabrycky)

Effect of Planet in Gap Between Kepler-11 f & g on Fit to TTVs of Observed Planets

No evidence for a missing planet between f & g (Jontof-Hutter et al. 2017)

Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

Orbits Are Extremely Close

Kepler-36 b Mass Measured within 4.2%, Radius Measured within 1.8%

Kepler-36 b is Consistent with an Earth-like Composition

- Kepler-36 b is the rocky exoplanet with best constrained mass, density, and composition: mass known within 4.2%, radius to 1.8%, density to 4.6%.
- Kepler-36 b's mass and radius are consistent with an Earth-like composition. An iron-enhanced Mercury-like composition is ruled out.
- In contrast, Kepler-36 c requires several percent of its mass in a hydrogen-rich envelope. (L. A. Rogers et al. in prep)

Mass vs. Radius for sub-Neptune Exoplanets

Eric Lopez 5/2016

Mass-Radius Relationship for Planets and Small Stars

The Smallest Known Planet

A Very Small Planetary System planet KOI-500 500.05

P (days) Mp(Mearth) 500.05 0.9867790 1.5 2.2 500.03 3.0721660 4.4 500.04 4.6453530 500.01 7.0534780 8.0 500.02 9.5216960 8.5

also known as

Kepler-80

Kepler-16: A Saturn-like planet orbiting a close binary

Kepler's Small Habitable Zone Planets

As of May 10, 2016

Kepler's Small Habitable Zone Planets

As of May 10, 2016

Kepler's Small Habitable Zone Planets

As of May 10, 2016

Kepler-62 System

Kepler-186 f: a planet slightly larger than Earth in the habitable zone of an M dwarf

The Kepler Orrery II t[BJD] = 2454965 D. Fabrycky 2012

• ان R © © • Ø • • **(2) (** \odot **R** Ò **(2)** • Ô • Ô Ô đ \odot \odot \bigcirc Q \bigcirc • \bigcirc • \odot O **O** ً **()** ¢ \bigcirc O \bigcirc \bigcirc O • (\cdot) O • • \bigcirc $\left(\mathbf{0} \right)$ \bigcirc (\mathbf{o}) (\circ) \bigcirc \bigcirc (\bigcirc) \bigcirc \bigcirc () \bigcirc ົ 🔊 🤊 • (\cdot) Ó Ô 🚱 $\left(\mathbf{O} \right)$ (\mathbf{O})

Mass Distribution of RV Planets

M star Planet Occurrence (%)

Dressing & Charbonneau (2015)

Sizes of Planet Candidates Totals as of November, 2013

Exoplanet Discoveries

Key Kepler Findings

Planets, especially "small" ones, are commonPlanetary systems are flat, like the Solar SystemPlanets & planetary systems are extremely diverse

K2: Good Science from a Broken Spacecraft

In May of 2013, *Kepler* lost its 2nd gyroscope and could no longer point at its original field of view
Kepler can still observe in its orbital plane

August 6, 2018 - October 10, 2018

- Forward facing to facilitate simultaneous ground observations
- Partial overlaps with C3 & C12
- Return to Trappist-1
- Return to Neptune
- Comet 2P/Encke

DDT deadline is April 12, 2018

Exoplanets: K2 vs. Kepler

Typical K2 Planets are

around closer stars

around brighter stars

5 planet system found by *K*2

Vanderburg et al. 2016

Multis Observed by K2

Kepler gyros failed – Spacecraft repurposed as K2

Many FOVs, focus on bright stars and small stars

Dozens of multis discovered, with as many as 5 planets

Observed TRAPPIST-1

Mass-Radius Diagram for TRAPPIST-1 Planets

Transiting Exoplanet Survey Satellite **TESS:** Discovering New Earths and Super-Earths in the Solar Neighborhood

George Ricker (MIT), PI

Launch: 2018 March 20

TESS Sky Coverage

TODAY'S LESSON : WO OR "WITTEN'S DOG" NEUTRON ENCRUSTED STEAMING HOT SUPERDUPERSYMMETRIC DoWo7 STRING THEORY " Any questions?