
MHDシミュレーションコードの
Xeon Phi KNLでの性能評価

Sep. 8, 2017

Keiichiro FUKAZAWA1, Takayuki UMEDA2,
Takeshi NANRI3

1. Academic Center for Computing and Media Studies, Kyoto University, Japan
2. Institute for Space-Earth Environmental Research at Nagoya University, Japan
3. Research Institute for Information Technology, Kyushu University, Japan

2

Introduction
What is the planetary magnetosphere?
No less than 99.9 % of the matter
in the visible universe is in the
plasma state which is solar/stellar
plasma.

The planetary magnetosphere is
formed by the interaction
between the solar wind which is
the plasma from the Sun and the
planetary magnetic field.

Fig.1. A sketch of the magnetosphere (modified from Kivelson and Russel [1995])

The phenomena in this region
is called as “space weather”

3

Introduction
Forecast of space weather

To forecast the space weather, we
perform the simulation of
magnetosphere with the global
MagnetoHydroDynamic (MHD)
simulation code.

From our estimation, at least 20
PFlops (effective performance not
theoretical performance) is
required to simulate the accurate
global magnetosphere in the real
time.

Fig. 2．Simulation result of Terrestrial magnetosphere

Motivation
Perform the MHD code for space weather effectively
There are various computer architectures used in the recent supercomputer
systems, such as vector, X86, POWER and SPARC for CPUs, then GPU and
MIC for accelerators/coprocessors.

It is hard for application developers to optimize their applications to
these various computer architectures.

4

In general, the computing efficiency of user applications on a scalar-type
computer tends to be low (~5 %) [Oliker et al., 2004], although the
computing efficiency of LINPACK sometimes exceeds 80 %.

Considering the execution efficiency, we need more performance of Top
1 supercomputer now (Sunway TaihuLight 125 PFlops in the theoretical
performance) to forecast the space weather precisely.

5

Simulation Model | MHD equations
Vlasov equation (collisionless Boltzmann equation)

Maxwell equations

0)(=
∂
∂

×++
∂
∂

+
∂
∂

v
fBvE

m
q

r
fv

t
f s

s

sss

=⋅∇

=⋅∇

∂
∂

−=×∇

∂
∂

+=×∇

0

1

0

20

B

E

t
BE

t
E

c
JB

ε
ρ

µ MHD equations

)(*

)(

)(

11)(

)(

2

2

2

d

P

BBJ

BBv
t
B

PDvPPv
t
P

gBJPvv
t
v

Dv
t

−×∇=

∇+××∇=
∂
∂

∇+∇−∇−=
∂
∂

++×+∇−∇−=
∂
∂

∇+−∇=
∂
∂

η

γ

ρρρ

ρρρ

・

・

・

Φ

6

Simulation Model | Numerical method
Numerical simulation code
• Our three-dimensional MHD code uses

the “Modified Leap frog (MLF)” method
[Ogino et al., 1992].

• Using MLF method, partial difference
equations are solved by the two-step Lax-
Wendroff method for one time step and
then by the Leap frog method for (l − 1)
time steps and the procedure is repeated.

• MLF method is a kind of combination
technique which balances numerical
stability of the two step Lax-Wendroff
method and dissipationlessness of the
Leap frog method.

Fig. 3. Diagram of Modified Leap frog method

7

Simulation Model | Numerical method
Implementation
• The MLF method is a kind of central

difference method using 8 grid points
to update a value as Fig. 4.

• This method uses the staggered grid
(half mesh) points to develop.

• The implementation of this
development is like right code.

Fig. 4. Coordinate of MLF numerical method to update one value.

do k=1, nz
do j=1, ny

do i=1, nx
u(i,j,k,8)=u(i,j,k,8)+dx*(&

f(i+1,j+1,k+1,4)*f(i+1,j+1,k+1,6)a&
- f(i+1,j+1,k+1,2)*f(i+1,j+1,k+1,8) &
+ f(i+1,j,k+1,4)*f(i+1,j,k+1,6) &
- f(i+1,j,k+1,2)*f(i+1,j,k+1,8) &
+ f(i+1,j+1,k,4)*f(i+1,j+1,k,6) &
- f(i+1,j+1,k,2)*f(i+1,j+1,k,8) &
+ f(i+1,j,k,4)*f(i+1,j,k,6) &
- f(i+1,j,k,2)*f(i+1,j,k,8) &
- f(i,j+1,k+1,4)*f(i,j+1,k+1,6) &
+ f(i,j+1,k+1,2)*f(i,j+1,k+1,8) &
- f(i,j,k+1,4)*f(i,j,k+1,6) &
+ f(i,j,k+1,2)*f(i,j,k+1,8) &
- f(i,j+1,k,4)*f(i,j+1,k,6) &
+ f(i,j+1,k,2)*f(i,j+1,k,8) &
- f(i,j,k,4)*f(i,j,k,6) &
+ f(i,j,k,2)*f(i,j,k,8))

end do
end do

end do

Simulation Model | Parallel method

Fig. 5. Schematics of three kinds of the domain decomposition methods. (1) One-dimensional domain
decomposition in z-direction. (2) Two-dimensional in y- and z-directions. (3) Three-dimensional domain
decomposition [Fukazawa et al., 2010].

)1(2
21 −= pnkTC

)1(2 2
1

2
22 −= pnkTC

)1(3 3
1

2
23 −= pnkTC

pnkTS
3

11 =

Calculation time（TS） Communication time（TC）

pnkTS
3

12 =

pnkTS
3

13 =

1D
2D

3D

8

Domain decomposition
• To decompose the simulation, there are three way according to the simulation

dimensions.

Simulation Model | Parallel method

Fig. 6. Computation time (TS), communication time (TC), and total parallel
computation time (TS + TC) as a function of the number of processor core. Here k1
and k2 are set to be 1 and 0.01, respectively, to simplify this figure [Fukazawa et al.,
2010].

The communication time (TC)
of the 3D domain
decomposition is the shortest.

Thus the total time (TS+TC) is
shortest in 3D domain
decomposition.

*the coefficients k1 and k2
assumed to be independent of
the way of decomposition.

9

Estimation of communication time

10

Simulation Model | Setting
Parallelization
• 1D, 2D and 3D domain decompositions (DD)
• Flat MPI and hybrid MPI
• To minimize the communication time, we use a buffer array which stores all

the boundary data for inter-core and inter-node communications (pack/unpack
operation) except for 1D decomposition.

Variation of array order
• Normal array type : f(i, j, k, m) (SoA)
• To consider the cache hit efficiency, we change the array order in the 3D DD

as f(m, i, j, k) (AoS)
* We use the Fortran.

System size
• Size of array is 64 MB/core for the computational domain and additionally 192

MB/core for workspaces for computing the MHD equations (the weak scaling
is used in this study).

11

Evaluation System

XC40
CPU Architecture 68 cores Xeon Phi KNL

Frequency 1.4 GHz
(3.05 TFlops)

Cache L1: 32 KB/core
L2: 34 MB/CPU （1MB/Tile）

Memory Band width 102.3 + 921 GB/s /node
B/F 0.03 or 0.30
Node Number of CPUs 1

Memory size 96 GB + 16GB
System Number of nodes 1,800 (122,400 cores)

Rmax 5.48 PFlops
Node comm. Dragonfly, Aries (12.5GB/s)

Fig. 7. Cray XC40

Table 1. Characters of XC40

Xeon Phi Knights Landing (KNL)
• Cray XC40 @ Kyoto Univ.

12

Evaluation Results 1
Flat MPI

Fig. 8. Performance results of MHD simulation with Flat MPI on
Cray XC40

The computing performance of AoS is
not good compared to the SoA cases.

The SoA type be suitable for the Xeon
Phi since the Xeon Phi has the high
SIMD width due to the vector
optimization.

The performances of SoA seems not so
different.

The performances 1D, 2D, and
3D of SoA with 128 nodes are
26.6, 27.7 and 27.2 TFlops,
respectively.

13

Evaluation Results 2
Hybrid MPI

Fig. 9. Performance results of MHD simulation on Cray XC40

*The average communication time of
hybrid MPI and flat MPI of 3D SoA
are 3.5×10-2 sec and 1.5×10-2 sec.

The performance of hybrid parallel
computation is clearly not good.

In this hybrid MPI, the MPI
communications are performed on 8
cores per node.
The core performance of Xeon Phi
KNL is not good as compared to the
general Xeon core.

Then a load of communication per
core becomes high in the hybrid MPI.

14

Evaluation Results 3
Hybrid MPI
To examine the effect of thread to
the performance, the evaluations
with several combinations of
process and thread are performed.

The performance increases with
the small number of thread.

Fig. 10. Performance of Hybrid MPI with various combination of
process and thread on one Xeon Phi KNL.

To avoid this performance degradation,
it is thought the overlap of calculations
and communications is effective.

15Optimization 1
Need more serial performance of Xeon Phi
• From the evaluation results, the execution on Xeon Phi KNL seems to

be low, thus the optimizations are added to our MHD simulation code.
• Considering the architecture of Xeon Phi KNL, it is important for the

optimization to use the SIMD effectively and decrease the non-
sequential memory access (increase the cache hit rate).

• So, the followings optimizations are performed to 3DD of SoA.

1. 64-byte alignment of array
2. Prefetch of Memory access
3. Arrangement of array length

16Optimization 2
Serial tuning of Xeon Phi
• For the 64-bytes aligned load/store with Xeon Phi, we use the compile

option “-align array64byte” and the following directive
real(kind=4) A(1024,100)
!DEC$ATTRIBUTES ALIGN: 64:: A

This optimization of alignment increases the execution efficiency
by 0.6 %.

• The prefetch can be controlled by the compile option “-qopt-prefetch=4”.

This makes the 1.2 % efficiency increase.

*There are some compile options for control the prefetch however the other
options are not effective to our code.

17Optimization 3
Serial tuning of Xeon Phi
• The effect of array length to the calculation performance.

Original array configuration f(nx, ny, nz, m) = (100, 100, 100, 8) / proc.

The configurations of array as (200, 100, 50, 8), (200, 50, 100, 8) and
(400, 50, 50, 8) are evaluated to see the vector performance difference.
*The performance is good with the long length of nx.

(200, 50, 100, 8) performance ↘
(200, 100, 50, 8) and (400, 50, 50, 8) performance ↗
*0.6 % incensement of execution efficiency

18

Optimization 4
Optimization results

From these optimizations, we
obtained the 2.4 % increases in
execution efficiency in total.
The optimization code achieves 30
TFlops using 128 nodes and the
non-optimization code is 27 TFlops.

Considering the simulation is
performed for one year, this
performance difference decrease
the simulation time about one
month.

Fig. 11. Optimized performance results of MHD simulation code.

The results of this study are
important for the numerical
simulation area of fluid which
requires the long time evolution.

19

Performance of MHD code
Performance comparison

Core/CPU Rmax
[TFlops]

Rpeak
[TFlops]

Rpeak
/CPU

[GFlops]

Efficiency
[%]

Suitable
domain

decomposition

CPU
architecture

SX-ACE 1024/256 65.50 29.20 114.0 45 3D SoA Vector

K 262144/32768 4194.30 914.12 27.9 22 3D AoS SPARC64 VIIIfx

FX100 16384/512 576.72 91.49 178.7 17 3D SoA SPARC64 XIfx

CX400 23616/2952 510.11 104.23 35.3 20 3D SoA Xeon (SB)

HA8000 23160/1930 500.26 83.42 43.2 17 2D SoA Xeon (IB)

XC30 448/32 16.49 1.37 42.8 8 2D SoA Xeon (HSW)

XC40 1088/16 48.86 4.32 273.3 9 3D SoA KNL

Xeon Phi 5120 60/1 1.00 0.08 84.0 8 3D SoA KNC

Tesla K20X 896/1 1.31 0.15 153.3 12 3D SoA Kepler

Table 2. Performance evaluation of MHD simulation code on various computer systems.

20

Summary
Performance evaluation of MHD simulation code on
Xeon Phi KNL
 To forecast the space weather accurately, it is necessary to perform the

large magnetohydrodynamic (MHD) simulation of magnetosphere.

 In this study, we have evaluated the performance of our MHD simulation
code with Xeon Phi KNL on Cray XC40 at Kyoto University.

 As the results of evaluation with flat MPI, the 2D and 3D domain
decompositions with SoA are the effective calculation performances and
3D domain decomposition with AoS becomes lower performances

 Using the hybrid MPI, the performance becomes the worst due to a load
of communication and related load/store operations.

21

Summary
Performance evaluation of MHD simulation code on
Xeon Phi KNL
 The optimizations of alignment, prefetch and array configuration are

added to our MHD simulation code and we have obtained 2.4 %
increase of execution efficiency in total and 3 TFlops performance gain
using 128 nodes of Cray XC40.

 Comparing the results of performance evaluation with other computer
systems, Xeon Phi KNL achieves the triple performance of Xeon Phi
KNC.

 To obtain more calculation performance, we need to overlap the
calculation with communication and arrange the number of “add” and
“multiple” in the implementation for “Fused multiple add”.

	MHDシミュレーションコードのXeon Phi KNLでの性能評価
	Introduction
	Introduction
	Motivation
	Simulation Model | MHD equations
	Simulation Model | Numerical method
	Simulation Model | Numerical method
	Simulation Model | Parallel method
	Simulation Model | Parallel method
	Simulation Model | Setting
	Evaluation System
	Evaluation Results 1
	Evaluation Results 2
	Evaluation Results 3
	Optimization 1
	Optimization 2
	Optimization 3
	Optimization 4
	Performance of MHD code
	Summary
	Summary

