時間変動電場存在下での プラズマ中固体表面帯電現象の 数値モデリング

<u>Yohei Miyake</u>^{*1}, Takeshi Kiriyama¹, Yuto Katoh², and Hideyuki Usui¹
 1. Kobe University, Kobe, Japan
 2. Tohoku University, Sendai, Japan

z. Tonoku Oniversity, Senual, Japar

H29年度STEシミュレーション研究会

太陽活動を起点とする宇宙環境変動

Credit: NICT

衛星帯電に関わる諸問題

トピックス	キーワード	予測が必要な帯電電圧
衛星障害につながる 帯電 エ学的	 ・日陰環境 ・中/高エネルギー粒子フラックス ・部分帯電(e.g., 太陽電池カバーガラス) ・電気システム(e.g., 電気推進) …etc. 	放電につながる降伏電 圧: 数100 V~
科学衛星観測への 影響: _{理学的} ①粒子計測	 中低エネルギー入射粒子の加減速 /速度分布変性 衛星起源荷電粒子(e.g., 光電子)に よるコンタミ 	計測対象粒子エネルギー に相当する電圧: 数V
科学衛星観測への 影響: ②プローブ電場計測	ダブルプローブ帯電の非対称性 • 光電子 • ウェイク プローブインピーダンス	数 mV

その他のトピックス:デブリ衝突による帯電、固体小型天体の帯電、帯電ダスト

Charging of solar-system small bodies

SC potential fluctuations due to chorus waves

➤VAP observations:

good correlation

On-orbit SC potential data are obtained from a potential difference between SC and E-field probes.

-SC chassis and probe potentials fluctuating differently?

Why SC potential changes?

$$I_{\text{plasma}}(\phi_{\text{sc}}) = env\Gamma(\phi_{\text{sc}})$$

- 1. Density variations
- ⇒ Thermal electron evacuation from wave propagation region due to ponderomotive force

 \Rightarrow Modified particle flux \Rightarrow Change in ϕ_{sc} ? [Courtesy of Katoh]

2. Modified particle dynamics ⇒ Modulated particle motions due to wave (electric) field ⇒ Modified particle flux ⇒ Change in ϕ_{sc} ?

Possible mechanisms

Particle-in-Cell (full particle) simulations

wavelength ≫ spacecraft spatial scale
→ applying spatially-uniform rotating wave E-field

SC potential variation as function of E_{wave}

Most of PE trapped by the sheath potential well. Fraction of PE escaping from the well balances incoming plasma ele.

Potential barrier decreases. \rightarrow Enhanced PE outflow. \rightarrow Need higher ϕ_{sc} to recover current balance. Thin- vs thick- sheath limits —heightened potential barrier lowered potential barrier

PE

thin

PE: photoelectron

 $\Delta \phi_{sc}$: small simulation (intermediate regime)

Wave E-field direction

PE escape

Asymmetry in PE current modification

Asymmetry in PE current modification

Asymmetry in PE current modification

Wave E-field effects on incoming plasma electrons

➢ influx of plasma electrons rotating with E_{wave}

$$v_{x,y} = \pm \frac{q}{m} \frac{\Omega}{\Omega^2 - \omega^2} E_{y,x} - i \frac{q}{m} \frac{\omega}{\Omega^2 - \omega^2} E_{x,y},$$

$$I_e = n_e e |v_{xy}| \propto E_{Wave}$$

Plasma electron current also increases slightly.

Effects of induced charge on SC surface

In the simulation, we can artificially exclude that effect.

Further complicating factors... (future works)

- 1. Multiple conductor system
 - multiple satellite components will change photoelectron escaping rate

Angle between wave E-field & static B-field

 PE escape enhanced in more parallel E&B
 orientations (e.g., in case of oblique-whistler mode, electrostatic mode...)

Ongoing work...

Summary and conclusions

PIC modeling of SC potential fluctuations in the presence of plasma wave (time-varying) electric field

Increase in SC potential

- change in height of potential barrier
- increase in escaping photoelectron current some basic properties confirmed in the simulations - thin-/thick- sheath regime, - induction charge

To be studied:

- Practical cases of multiple conductor system
- Effects of oblique/parallel angles between wave Efield and static B-field