2017/09/07 (Thu.)

# 内核半径の異なる回転球殻における 地球ダイナモ維持に必要なレイリー数 に関する研究

西田有輝<sup>1</sup>,加藤雄人<sup>1</sup>,松井宏晃<sup>2</sup>,熊本篤志<sup>1</sup> 1東北大学大学院理学研究科,2カリフォルニア大学デービス校



1.2 磁気流体の性質による対流発生・ダイナモ維持条件の変化

| 名前       | 記号 | 定義                                    | 比             | 推定値          |
|----------|----|---------------------------------------|---------------|--------------|
| レイリー数    | Ra | $\alpha g_0(\Delta T)L^3/\nu\kappa_T$ | 浮力/粘性力        | 6×10^30      |
| エクマン数    | Ε  | $\nu/\Omega L^2$                      | 粘性力/コリオリカ     | 1.0×10^(-15) |
| プラントル数   | Pr | $\nu/\kappa_T$                        | 熱拡散時間/粘性拡散時間  | 1.0×10^(-6)  |
| 磁気プラントル数 | Pm | $ u/\eta$                             | 磁気拡散時間/粘性拡散時間 | 0.1          |



1.3 対流発生・ダイナモ維持条件の半径比依存



[Heimpel et al., 2005]

半径比を小さくすると、対流発生に必要なレイリー数も ダイナモ維持に必要なレイリー数も大きくなる

### 1.4 初期地球環境



[O'Rourke & Stevenson, 2016]

約10億年前に内核が形成されたと考えられている。 つまり、過去にさかのぼるにつれ内核は小さくなり、 あるいは内核が存在しないという内部構造の変化がある。 1.5 研究の目的

初期地球環境において詳細な磁場生成過程を明らかにする。 - 対流が発生する条件

- シミュレーション結果と古地磁気との比較
- 熱対流と組成対流の寄与度

 $\bigcirc$ 



2. 手法  
2.1 無次元化したMHD  
ダイナモ支配方程式  
運動方程式  
運動方程式  
基さ: 
$$r = L\tilde{r}$$
,時間:  $t = (L^2/\nu)\tau$ ,速度:  $u = (\nu/L)\tilde{u}$ ,  
圧力:  $P' = (\rho_0 \nu^2/L^2)\tilde{P}$ ,温度:  $T' = (\Delta T)\tilde{T}$ ,  
磁場:  $B = \sqrt{\rho_0 \mu_0 \Omega \eta} \tilde{B}$   
 $E\left(\frac{\partial \tilde{u}}{\partial \tau} + \tilde{\omega} \times \tilde{u}\right) = -E\tilde{V}\left(\tilde{P} + \frac{1}{2}\tilde{u}^2\right) - E\tilde{V} \times (\tilde{V} \times \tilde{u})$   
 $+Ra^*\tilde{T}\frac{\tilde{r}}{r_0} - 2e_z \times \tilde{u} + \frac{1}{Pm}(\tilde{V} \times \tilde{B}) \times \tilde{B}$   
熱拡散方程式  
 $\frac{\partial \tilde{T}}{\partial \tau} = -(\tilde{u} \cdot \tilde{V})\tilde{T} + \frac{1}{Pr}\tilde{V}^2\tilde{T}$   
磁場の誘導方程式  
 $\frac{\partial \tilde{B}}{\partial \tau} = \tilde{V} \times (\tilde{u} \times \tilde{B}) - \frac{1}{Pm}\tilde{V} \times \tilde{V} \times \tilde{B}$   
 $\tilde{V} \cdot \tilde{B} = 0$   
非圧縮流体の連続の式  
 $\tilde{V} \cdot \tilde{u} = 0$ 

u: 速度, B: 磁場, J: 電流密度, g: 重力加速度, T: 温度, P: 圧力,  $\rho$ : 密度,  $\rho_0$ : 基準密度,  $T_0$ : 基準温度,  $\alpha_T$ : 熱膨張率,  $\Omega$ : 自転角速度,  $\nu$ : 動粘性係数,  $\kappa_T$ : 熱拡散係数,  $\eta$ : 磁気拡散係数,  $L(=r_0-r_1)$ : 外核の厚さ,  $\mu_0$ : 真空の透磁率  $\Delta T(=T(r_1) - T(r_0))$ : ICBとCMBの温度差,  $e_z$ : 単位ベクトル,  $\omega(= \nabla \times u)$ : 渦度

※修正レイリー数 $Ra^* = Ra \cdot E/Pr$ 

2.2 コードと初期条件

数値ダイナモ公開コードCalypso[Matsui et al., 2014] を使用

- 動径方向微分… 2次有限差分法
- スペクトル法

熱対流… ICBとCMBに温度差ΔT(固定)を与える



<sup>[</sup>Matsui, Calypso Tutorial]

Dynamo benchmark case 1;内核が外核と共回転し電気的に絶縁されたダイナモ モデル[Christensen et al., 2001]

#### 初期温度場

初期磁場

$$B_{r} = \frac{5}{8} \left( 8r_{o} - 6r - 2\frac{r_{i}^{4}}{r^{3}} \right) \cos\theta, B_{\theta} = \frac{5}{8} \left( 9r - 8r_{o} - \frac{r_{i}^{4}}{r^{3}} \right) \sin\theta, B_{\phi} = 5\sin(\pi(r - r_{i})) \sin2\theta$$

# 2.3 パラメータ設定

Case 1 初期値の温度場として様々なモードや特定のモードを与え、どの場合に ダイナモが維持されるか調べた

Case 2 半径比  $r_i/r_o = 0.15, 0.25, 0.35$  ごとにレイリー数のみ変えてダイナモ シミュレーションを行い、ダイナモが維持されるか調べた

|                                              | Heimpel and Evans,<br>2013 | Case 1        | Case 2           |
|----------------------------------------------|----------------------------|---------------|------------------|
| $r_{\rm i}/r_{\rm o}$                        | 0.15                       | 0.15          | 0.15, 0.25, 0.35 |
| $Ra^* = \alpha g_0(\Delta T) L / \nu \Omega$ | 670                        | 400           | (A)              |
| $E = \nu / \Omega L^2$                       | 1.0e-4                     | 1.0e-3        | 1.0e-3           |
| $Pr = \nu/\kappa$                            | 1                          | 1             | 1                |
| $Pm = \nu/\eta$                              | 3                          | 3             | 3                |
| $(N_r, N_{\theta}, N_{\phi})$                | (65, 192 <i>,</i> 384)     | (81, 96, 192) | (63, 72, 144)    |
| l <sub>max</sub>                             | 128                        | 63            | 47               |
| Mode of initial <i>T</i>                     | -                          | all, 3, 4     | 4                |
| Run time $(L^2/\eta)$                        | 0.77                       | 1.67          | 1.67             |

(A) 
$$r_i/r_o = 0.15 \dots Ra^* = 100, 200, 300, 400, 500$$
  
 $r_i/r_o = 0.25 \dots Ra^* = 75, 100, 200$   
 $r_i/r_o = 0.35 \dots Ra^* = 50, 60, 75, 100, 200$ 

9

3. 結果 3.1 Case1においてダイナモが維持されなかった場合



3.2 Case1においてダイナモが維持される場合



過去の地球を想定 ( $r_i/r_o = 0.15$ )

### 3.3 赤道面における渦度Z成分・磁場Z成分空間分布



| $Ra^*$ | convection | magnetic field |
|--------|------------|----------------|
| 100    | ×          | ×              |
| 200    | $\bigcirc$ | ×              |
| 300    | $\bigcirc$ | ×              |
| 400    | $\bigcirc$ | $\bigcirc$     |
| 500    | $\bigcirc$ | ×              |

3.4 Case2の結果

 $r_{\rm i}/r_{\rm o} = 0.15$ 

| $Ra^*$ | convection | magnetic field |
|--------|------------|----------------|
| 75     | ×          | ×              |
| 100    | $\bigcirc$ | ×              |
| 200    | $\bigcirc$ | $\bigcirc$     |

magnetic field  $Ra^*$ convection  $\times$  $\times$ 50  $\bigcirc$ Х 60  $\bigcirc$  $\times$ 75  $\bigcirc$ 100 Х  $\bigcirc$ 200  $\bigcirc$ 

$$r_{\rm i}/r_{\rm o} = 0.25$$

$$r_{\rm i}/r_{\rm o} = 0.35$$

4. Discussion

- ダイナモを維持させるための初期温度場はある特定のモードを与える必要がある。 少なくともm=4のモードはダイナモ維持に重要

- 対流発生範囲は

 $r_{\rm i}/r_{\rm o} = 0.15$ のとき $Ra^* \ge 200$ 

 $r_{\rm i}/r_{\rm o} = 0.25$ のとき $Ra^* \ge 100$ 

 $r_{\rm i}/r_{\rm o} = 0.35$ のとき $Ra^* \ge 60$ 

Al-Shamali et al., (2004)で得られている式を使うと

 $Ra_{crit}^* = 95 (r_i/r_o = 0.15), 76 (r_i/r_o = 0.25), 69 (r_i/r_o = 0.35)$ となり、内核が小さい方が対流が発生しづらいという傾向に一致。 また、Heimpel et al., (2005)同様、内核が小さい方がダイナモが維持されづらい という傾向も一致。

これは、境界領域が小さくなるからだと考えられる。

-  $r_i/r_o = 0.15$ ,  $Ra^* = 400$ のとき ガウス係数より磁気モーメント $m = 7.70 \times 10^{20}$ Am<sup>2</sup> (IGRF-11 model [Finlay et al., 2010] から計算すると現在は $m = 7.74 \times 10^{22}$ Am<sup>2</sup>) 過去の地球としては十分ないし若干小さい。 組成対流の寄与分が不足?

### 5. Summary and future work

#### <Summary>

| mode | magnetic field |
|------|----------------|
| all  | ×              |
| 3    | ×              |
| 4    | $\bigcirc$     |

- 内核が小さい方が対流発生・ダイナモ維持にはより大きなレイリー数が必要

<Future work>

- エクマン数依存性をみるために、時間方向・空間方向を細かくしてエクマン数を E=1.0e-4にしたダイナモシミュレーションを行う。
   過去の研究ではE=1.0e-4と設定したシミュレーションが多く、結果を比較するために もエクマン数を小さくすることが必要。
- 磁気プラントル数が大きい方がダイナモが維持されやすいと推測されることを踏まえ、
   磁気プラントル数を今回の計算より大きく設定してシミュレーションする。

- 臨界レイリー数を線形解析から導出する

#### References

- Al-Shamali et al., Varying the sherical shell geometry in rotating thermal convection, Geophysical and Astrophysical Fluid Dynamics, 2004
- Biggin et al., Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation, Nature, 2015
- Christensen et al., A numerical dynamo benchmark, Physics of the Earth and Planetary Interiors, Vol.128, p.25-34, 2001
- Christensen and Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic field, Geophys. J. Int., 2006
- Dziewonski and Anderson, Preliminary reference Earth model, PEPI, 1981
- Finlay et al., International Geomagnetic Reference Field: the eleventh generation, Geophysical Journal International, Vol.183, Issue 3, p.1216-1230, 2010
- Heimpel et al., A numerical study of dynamo action as a function of spherical shell geometry, EPSL, 2005
- Heimpel and Evans, Testing the geomagnetic dipole and reversing dynamo models over Earth's cooling history, PEPI, 2013
- Matsui et al., Multiscale convection in a geodynamo simulation with uniform heat flux along the outer boundary, Geochemistry, Geophysics, Geosystems, 2014
- Matsui, Calypso Tutorial Version 1.31, Computational Information for Geodynamics
- O'Rourke & Stevenson, Powering Earth's dynamo with magnesium precipitation from the core, Nature, 2015



Appendix 2 Differences between thermal and compositional convection

|    | Thermal                                   | Compositional                             |
|----|-------------------------------------------|-------------------------------------------|
| Ra | $\alpha_T g_0(\Delta T) L / \nu \kappa_T$ | $\alpha_C g_0(\Delta C) L / \nu \kappa_C$ |
| Е  | $\nu/\Omega L^2$                          | $\nu/\Omega L^2$                          |
| Pr | $\nu/\kappa_T$                            | $\nu/\kappa_{C}$                          |
| Pm | $ u/\eta$                                 | $ u/\eta$                                 |

- Prandtl number  $Pr_C/Pr_T = O(10^3)$  [Calkins et al., 2017] ( $\Leftrightarrow \kappa_T/\kappa_C = O(10^3)$ )

- Rayleigh number  $\alpha_T \approx 10^{-5} \text{K}^{-1}, \Delta T \approx 1000 K$   $\alpha_C \approx 0.1$ ? (Fe<sub>0.82</sub>Si<sub>0.10</sub>O<sub>0.08</sub> [Pozzo et al., 2013]),  $\Delta C =$ ? If  $\alpha_T \Delta T \sim \alpha_C \Delta C, Ra_C/Ra_T = O(10^3)$ 

# Appendix 3 Dependency of Pr

| Pr  | convection | magnetic field |
|-----|------------|----------------|
| 1   | $\bigcirc$ | $\bigcirc$     |
| 10  | $\bigcirc$ | ×              |
| 100 | $\bigcirc$ | ×              |

 $Ra^*$ , *E* and *Pm* are fixed.  $r_i/r_o = 0.15$ 



#### Kinetic energy density

