# 金星大気循環の 高解像度シミュレーション

#### 樫村 博基(神戸大/CPS)

共同研究者

杉本 憲彦(慶應大)高木 征弘(京産大)松田 佳久(東京学芸大)大淵 済(神戸大/CPS)

榎本 剛(京大・JAMSTEC)中島 健介(九大)石渡 正樹(北大)佐藤 隆雄(宇宙研)

はしもと じょーじ(岡山大)佐藤 毅彦(宇宙研・総研大)高橋 芳幸(神戸大/CPS)林 祥介(神戸大/CPS)

謝辞:金星探査機あかつきに関わる全ての方に感謝申し上げます。本研究は、地球シミュレータ利用課題『AFES を用いた地球型惑星の大気大循環シミュレー ション』及び『AFES を用いた火星・金星大気の高解像度大循環シミュレーション』と文部科学省ポスト「京」萌芽的課題3「太陽系外惑星(第二の地球)の誕 生と太陽系内惑星環境変動の解明」の一環として実施しました。

図: (左) © ISAS/JAXA, IR2夜面 (右) 金星AFES鉛直流



#### 自己紹介 |樫村 博基

- 専門分野:惑星気象学・大気力学・地球流体力学
- 研究対象:惑星規模の大気の流れ(大気大循環)
- 研究手法:数値実験・シミュレーション解析
- 所属学会:気象学会・惑星科学会・SGEPSS
- これまでの歩み
  - 学生時代@京都大学
    - ▶ 研究室:気象学研究室 指導教官:余田成男 教授
    - ▶ 博士論文『惑星大気スーパーローテーションの力学に関する研究

-自転軸対称な理論モデルの構築と数値実験-』

- 金星探査機「あかつき」チーム@宇宙研
  - ▶ 任期中あかつきはクルージングのみ。カメラは動作せず。
  - ▶ 金星高解像度シミュレーションの解析を始める (継続中)。
- 気候変動リスク情報創生プロジェクトチーム@JAMSTEC
   ▶ 気候工学(ジオエンジニアリング)のシミュレーションデータ解析
- ポスト「京」萌芽的課題 惑星大気@神戸大学CPS

▶ 正二十面体準一様格子の非静力学全球大気モデルSCALE-GMの火星化



### 今日のお話

金星大気循環の特徴

② 大気大循環モデル(GCM)による研究

③ 金星AFESを用いた高解像度計算
 with 金星探査機あかつきの観測



# 金星大気循環の特徴 1





| 金星 | の特徴    |           |                 |
|----|--------|-----------|-----------------|
|    |        | 金星        | मिटेडर्ड्<br>सि |
|    | 赤道半径   | 6,052 km  | 6,378 km        |
|    | 表面重力   | 8.9 m/s²  | 9.8 m/s²        |
|    | 公転周期   | 224 日     | 365 日           |
|    | 自転周期   | 243 日(逆向) | 1日              |
|    | 赤道自転速度 | 1.81 m/s  | 465 m/s         |



### 金星大気の特徴

|        | 金星       | 地球    |
|--------|----------|-------|
| 主な大気組成 | 二酸化炭素    | 窒素、酸素 |
| 地表気圧   | 92 気圧    | 1 気圧  |
| 平均地表気温 | 730 K    | 288 K |
| 凝結成分   | 硫酸(全球覆う) | 7火    |
| 惑星アルベド | 0.78     | 0.30  |
| 有効放射温度 | 224 K    | 255 K |





 ・自転の非常に遅い金星では、昼面(太陽直下点)で上昇し、
 夜面(対蹠点)で下降する昼夜間対流が卓越すると考えられていた。





and middle portions of the f of the bottom scale height ere is a global phenomenon, ocations of the entry points. entry probe profiles of zonal elevation (Counselman et al. an altitude resolution of 1 km s than 55 km the probes give file from the probes and the ore there is a gap of about a

perature fluctuations with correlation with the fourth his structure is quite well the measurements, with a ). Between approximately spatial filtering technique ic structure experiment on oked for eddy structures in ucal flow component. nat none should be apparent e in Sec. VII below that the Fig. 5. structure with amplitudes  $\leq 10$  km (eddy structures) There is no clear





また、硫酸雲の濃淡模様を追跡すること
 昼面の平均的な水平風速分布が推定され



VMC/Venus Express



り

### スーパーローテーションの謎と仮説

- 地表面との摩擦・鉛直粘性によって、大気は減速されるはず。
  - 上空に西向き角運動量を供給し続けるメカニズムが必要。
- 提案されている生成・維持メカニズムの仮説



子午面循環、波や乱流、熱潮汐波の詳細を観測的に求めることは難しい。
 →数値シミュレーションによる研究



### 今日のお話 | ここまでのまとめ ① 金星大気循環の特徴

- ・金星は、自転が遅くて、空気が濃く、全球雲で覆われている
- ・大気は自転より約60倍も速く回転 = スーパーローテーション
- ・子午面循環 説 と熱潮汐波 説の2つの仮説

#### 2 大気大循環モデル(GCM)による研究

#### ③ 金星AFESを用いた高解像度計算 with 金星探査機あかつきの観測

### 大気大循環モデルによる研究





- ・球面上の大気の支配方程式(微分方程式)を数値的に解くモデル
   力学過程(力学コア)
  - ▶ 運動方程式 (ナビエストークス方程式)
    - (+ 静力学近似 + 浅い大気の近似)
  - ▶ 熱力学方程式
  - ▶ 物質移流の式
  - ▶ (状態方程式、連続の式)
  - 物理過程
    - ▶ 放射
    - ▶ 対流調節
    - ▶ 凝結・雲過程
    - ▶ 化学
    - ▶ エアロゾル微物理
    - ▶ などなど



(海洋を含む場合は大気海洋結合モデル、植生や炭素循環なども含む場合は地球システムモデルと呼ばれる)



# 力学コアの数値解法

- 単純な緯度-経度格子は格子間隔が不均一。
   特に、極付近で狭くなる → CFL条件が厳しくなる。
- スペクトルモデル
  - 球面調和関数で展開して、波数空間上で時間積分。 (非線形項は実空間で計算)
  - 解像度は最大波数(切断波数)で指定する。 ▶ T21, T42, T63, T159,…
- で時間積分。 Èする。

- 格子モデル
  - 球面上の格子点の取り方を工夫することで、準一様な格子を形成。
     ▶ 例)正二十面体準一様格子 Yin-Yang 格子 球面螺旋格子





15

図: <u>https://ja.wikipedia.org/wiki/球面調和関数;</u> Tomita et al. (2001, 2002); <u>http://www.research.kobe-u.ac.jp/csi-viz/</u> research/past/index.ja.html; <u>http://www.dpac.dpri.kyoto-u.ac.jp/2015/04/01/spherical-helix.html</u>

# 金星大気GCM計算の難しさ

地球大気と比べて

- 密度が高い
  - 放射緩和時間が長い|地球 ~50 地球日;金星 ~2万 地球日
- 自転が遅い
  - 角運動量供給が遅い|地球 ~ 3×10<sup>9</sup>; 金星 ~1×10<sup>7</sup> [m<sup>2</sup>/s/cycle]\*
  - ➡ 静止状態から(統計的)平衡状態に達するまで、長期間の積分が必要
  - 地衡流平衡(コリオリカと気圧傾度力のバランス)ではない
  - ➡ (地球大気で有用な)準地衡モデルが使えない
- 観測が少ない
  - ➡ 子午面循環場の検証が行えない
     ➡ 物理過程(スキーム)の検証が行えない

<

16

 $\left( >\right)$ 



- <u>動機:スーパーローテーションの再現・メカニズムの解明</u>
- <u>20世紀:変わり者(?)がたまに実施</u>
  - Kalnay de Rivas (1975): 東西波数 4 までの準自転軸対称モデル
  - Young & Pollack (1977): 切断波数 10、積分時間が不足
  - Rossow & Williams (1980):水平 2 次元モデル
  - Matsuda (1982): 少数モード展開モデル (多重解を示す)
  - Del Genio & Zhou (1996):地球GCMで自転を遅くした計算
  - √ 解像度や時間積分の不足・理想化された設定

➡金星大気シミュレーションというよりは、

スーパーローテーションメカニズムの仮説の数値的研究

▶ 私のD論 [Yamamoto (Kashimura) & Yoden 2013, 2015] もこれらに近い
 - 自転軸対称 2 次元モデル、ブシネスク流体、パラメータスイープ





FIG. 5. Latitude-height cross sections of (a) zonal mean meridional



・強い加熱を与えれば、GCMで「子午面循環仮説」が働くことを示した。
 - ただし、これらは日変化加熱(熱潮汐)を排除した設定。



- <u>2000年代:金星大気GCMの開発・研究が世界各国で活発化</u>
  - 日本: Takagi & Matsuda (2007)
    - ▶ モデルの複雑さは前頁のモデルと同様。
    - ▶ 南北加熱差を排除して、日変化加熱のみを与えた。
      - ✓「熱潮汐波仮説」によりスーパーローテーションが 生成しうることを示した。

✓東西風分布は、赤道に風速が集中しており、現実的でない?



- <u>2010年代:計算資源が潤沢に</u>
  - Lee & Richardson (2010)
  - Lebonnois et al. (2013)
  - ▶ 複数のGCM/力学コアによる 相互比較実験
    - ▶ 水平解像度は5°× 5°程度
    - ▶ ほぼ力学のみ
    - ▶ ニュートン加熱冷却
    - ▶ 日変化加熱なし

#### ➡拡散表現や数値解法に依存して、 数値解が大きく異なる結果に!



- <u>2010年代:計算資源が潤沢に</u>
  - Ikeda et al. (2011)
  - Lebonnois et al. (2010, 2016)
  - ▶ 放射伝達をまじめに計算 / 日変化・地形含む

➡スーパーローテーションが生成・維持されるが、 大気下層の東西風速が小さすぎる



- 2010年代:計算資源が潤沢に
  - Kashimura et al. (in prep, in prep)
    - based on Sugimoto et al. (2014a,b), Ando et al. (2016, 2017)
  - ▶高解像度計算
    - ▶ ニュートン冷却 + 太陽放射関数(現実的な強さ)
    - ▶ 初期にスーパーローテーション流を与える
    - ▶ 循環場で見られる、諸現象を解析
      - √ 波動、周極低温域、ストリーク構造(あとで詳しく)
      - √運動エネルギースペクトル → -5/3乗則が低波数まで

10<sup>11</sup> (m<sup>\*</sup>) 10<sup>11</sup> (m<sup>\*</sup>) 10<sup>11</sup> (m<sup>\*</sup>)

100

<



# 今日のお話 | ここまでのまとめ

#### ① 金星大気循環の特徴

- ・金星は、自転が遅くて、空気が濃く、全球雲で覆われている
- ・ 大気は自転より約60倍も速く回転 = スーパーローテーション
   ・ 子午面循環 説 と熱潮汐波 説の2つの仮説

#### 2 大気大循環モデル(GCM)による研究

- ・長期積分が必要・観測が少ない = 金星大気計算の難しさ
- ・2000年代までは力学モデル、なのにモデル間のバラツキ 大
- ・2010年以降、モデル間相互比較・高度複雑化・高解像度化
- ③ 金星AFESを用いた高解像度計算 with 金星探査機あかつきの観測

### 金星AFESによる高解像度計算 with 金星探査機あかつきの観測



# AFESとは?

- AFES = Atmospheric GCM For the Earth Simulator (Ohfuchi et al. 2004; Enomoto et al. 2008)
  - 地球シミュレータ(ES)に最適化された地球仕様の大気大循環モデル
  - 静力学近似を用いたナビエストークス方程式(プリミティブ方程式)を解く
  - 球面調和関数展開を利用したスペクトルモデル
  - 1998年から初代ESをターゲットとして開発が始まり、 2003年に全球10km格子・鉛直96層(T1279L96)の高解像度計算を実現。



- 初代ESの全システムを使って、ピーク性能比65% (26.58TFLOPS)を達成。



### 金星AFESとは?

- 地球シミュレータ公募課題 (↓代表はいずれも林祥介教授) 『AFES を用いた地球型惑星の大気大循環シミュレーション』(2006–2014) 『AFES を用いた火星・金星大気の高解像度大循環シミュレーション』(2015–) のもとで、AFESを金星化したもの。(開発は高木征弘准教授、杉本憲彦准教授)
- ほぼ力学モデル。2000年代の金星GCMと同じ。
- さまざまな解像度で計算を実施してきた。

| 切断波数 | ~水平格子                            | 間隔     | 鉛直層数。 | /層間隔   | 備考                          |
|------|----------------------------------|--------|-------|--------|-----------------------------|
| T21  | $5.6^{\circ} \times 5.6^{\circ}$ | 600 km | 60    | 2 km   | 2000年代の金星GCMの典型的な解像度        |
| T42  | $2.8^{\circ} \times 2.8^{\circ}$ | 300 km | 60    | 2 km   |                             |
| T63  | $1.9^{\circ} \times 1.9^{\circ}$ | 200 km | 120   | 1 km   |                             |
| T159 | 0.75° ×                          | 80 km  | 120   | 1 km   | ESの80 node×4 cpuで180日積分/24h |
| T319 | 0.35° ×                          | 40 km  | 240   | 0.5 km | ESの80 node×4 cpuで20日積分/24h  |
| T639 | $0.19^{\circ}$ $	imes$           | 20 km  | 120   | 1 km   | ESの80 node×4 cpuで4日積分/24h   |

 最近では、金星AFESを用いたデータ同化システムも開発 (Sugimoto et al. 2017)。

# 簡易金星版 AFES 計算設定

- 空間解像度:
  - 切断波数 T159(~0.75°× 0.75°; 水平 480 × 240 格子)
  - 鉛直層数 L120 (Δz~1km; シグマ座標 = 地表気圧で規格化した気圧座標)
- <u>放射過程は簡易:</u>
  - 水平一様なニュートン冷却と日変化含む太陽加熱(0-80 km; 60-70 kmで強い) - 基準温度場に低安定度層(55-60 km)を配置
- 雲・湿潤過程なし・地形なし・乾燥対流調節なし
- 大気上端での波の反射を防ぐための スポンジ層 (≧ 80km)
- 渦粘性(解像できないスケールの乱流の効果)
  - 4次の水平超粘性(∇4) 切断波数に対する緩和時間 0.01 地球日
  - 鉛直渦粘性 係数 0.15 m<sup>2</sup>s<sup>-1</sup>
- 初期値:基準温度場と温度風平衡にあるスーパーローテーション流

28

• 積分期間:4地球年



Height [km]

< <u>29</u> >



< 30 >











### 金星探査機あかつきと私の年表

| 年表         | あかつき(PLANET-Cプロジェクト)    | 私                   |
|------------|-------------------------|---------------------|
| 2000年12月   | 宇宙理学委員会に提案書が提出される       | 高校生                 |
| 2001年7月    | 第24号科学衛星「PLANET-C」計画が開始 |                     |
| 2004年      | PLANET-Cの開発が開始(予算がつく)   | 大学生                 |
| 2009年10月   | 探査機名が「あかつき」に決定          | D1                  |
| 2010年5月18日 | 打ち上げ予定 → 5分前に中止         | 種子島から見守る            |
| 2010年5月21日 | 打ち上げ成功!                 | 大学に戻ってた             |
| 2010年8月    | 宇宙研に滞在(角                | 屛析プログラム開発に参加)       |
| 2010年12月7日 | 金星軌道投入 → 失敗             | 大学でセミナー聴講中          |
| 2012年4月    | (金星より少し速く太陽を周回する)       | 宇宙研に着任              |
|            | (金星より少し速く太陽を周回する)       | 測距・テレメトリ受信など(地味な)運用 |
| 2014年8月    | (金星より少し速く太陽を周回する)       | 宇宙研を離任              |
| 2015年12月7日 | 金星軌道投入 → 成功             |                     |
| 2016年4~6月  | IR2夜面画像(プレス用)が世に出回る     |                     |



# 公開されたIR2金星夜面画像



• 2016年3月に、金星から約10万kmの地点から撮影(波長 2.26 μm)



#### 触発されて、金星AFESの結果を調べてみた IR2の夜面画像(プレス用) 金星AFESで計算された鉛直流





- 地表付近の暑い大気から射出される赤外線を
   高度 60 km の鉛直流の瞬間場 観測している。その赤外線は雲に遮蔽される。
  - ▶ 白 = 雲が薄い = 下降流?
  - ▶ 黒 = 雲が厚い = 上昇流?

- - ▶ 白 = 下降流
  - ▶ 黒 = 上昇流







#### 惑星規模のストリーク構造? IR2の夜面画像(エッジ強調処理後) 金星AFESで計算された鉛直流



 南北方向の位置が若干異なるものの、高緯度から低緯度にかけて伸びる、 惑星規模の(幾本もの筋からなる)ストリーク構造が、
 南北両半球に見られる。

### 鉛直気圧速度 | 動画(1時間毎)



←IR2夜面疑似カラー画像

© ISAS/JAXA





**<** 41 **>** 



- ・惑星規模ストリーク構造に対する
   日変化加熱(熱潮汐) と
   低安定度層(55-60 km、0.1 K/km)
  - の影響を調べるために、以下の実験を実施
  - 日変化なし(東西一様加熱)実験
  - 低安定度層の安定度を 2.0 K/km と 4.0 K/km に変えた実験





➡太陽加熱の日変化は、南北同期の原因ではない。





ストリーク構造の南北同期の原因は?

安定度を高くすると、
 ストリーク構造が現れないのはなぜか?











48

西向きに伝播するロスビー波が存在するには、
 渦位の平均南北勾配がつねに正でなければならない。



- ➡ 地球気象学での 赤道ロスビー波 とは異なる
  - √ 自転の遅い金星気象学の難しさ





- 擾乱成分による 極上空向きの熱輸送 は 傾圧不安定 の発生を示唆する。
  - 安定度が低い → 傾圧不安定
    - → 赤道ロスビー波のような構造 と 極域の渦との接続(?)
    - → 南北流の収束領域の形成 → 強い下降流 → 惑星規模ストリーク構造



# 今日のお話しここまでのまとめ

- ①金星大気循環の特徴
  - ・金星は、自転が遅くて、空気が濃く、全球雲で覆われている
  - ・大気は自転より約60倍も速く回転 = スーパーローテーション
  - ・子午面循環説と熱潮汐波説の2つの仮説
- ② 大気大循環モデル(GCM)による研究
  - ・長期積分が必要・観測が少ない = 金星大気計算の難しさ
  - ・2000年代までは力学モデル、なのにモデル間のバラツキ大
  - ・2010年以降、モデル間相互比較・高度複雑化・高解像度化

#### <u>③ 金星AFESを用いた高解像度計算 with 金星探査機あかつきの観測</u>

- ・地球シミュレータ用のGCMを金星化して高解像度計算
- ・あかつきIR2カメラの夜面画像が捉えた、惑星規模の ストリークと、類似の構造がシミュレーションで得られた
- ・赤道ロスビー波・ケルビン波<u>のような</u>構造により南北同期(?)
- ・低安定度層 → 傾圧不安定 がストリーク形成のカギ(?)

### 今日のお話のまとめ

#### ① 金星大気循環の特徴

- 金星は、自転が遅くて、空気が濃く、全球雲で覆われている
- •大気は自転より約60倍も速く回転 = スーパーローテーション
- ・子午面循環説と熱潮汐波説の2つの仮説

#### <u>② 大気大循環モデル(GCM)による研究</u>

- •長期積分が必要・観測が少ない = 金星大気計算の難しさ
- ・2000年代までは力学モデル、なのにモデル間のバラツキ大
- •2010年以降、モデル間相互比較・高度複雑化・高解像度化

#### <u>③ 金星AFESを用いた高解像度計算 with 金星探査機あかつきの観測</u>

- 地球シミュレータ用のGCMを金星化して高解像度計算
- あかつきIR2カメラの夜面画像が捉えた、惑星規模の
   ストリークと、類似の構造がシミュレーションで得られた
- ・赤道ロスビー波・ケルビン波のような構造により南北同期(?)
- ・ 低安定度層 → 傾圧不安定 がストリーク形成のカギ(?)

