磁気圏-電離圏結合系における オーロラ発達とAlfven乱流の励起

渡邊智彦, 兼山将寿, 前山伸也, 三輪有輝 名大•理•物理

Auroral arc growth as an instability

in M-I coupling

- Separation of characteristic scales
 - Global geometry of M-I coupling system
 => Field-line length ~ 100,000km
 - => Auroral oval ~ a few 100's km in N-S
 - Spatio-temporal structres of auroral arcs
 => Distance of multiple arcs ~10 km
- What is a physical mechanism providing the arc structures and its dynamics (drift velocity, growth rate, ...) ?
 - Feedback instability (primary) for formation of arc structures
 - Nonlinear instability (secondary) for deformation of arc structures

Feedback instability in M-I coupling

- Feedback instability: a possible mechanism to explain spontaneous growth and formtion of auroral arc structures in M-I coupling (Atkinson, Sato, in 1970's)
- When the convection *E* field exceeds a critical value, auroral arcs can grow though resonance of the shear Alfven wave and the density wave in the M-I coupling.
- => 3-D MHD simulation of feedback instability

フィードバック不安定性理論の拡張

- ジャイロ運動論による磁気圏プラズマの記述
 - オーロラ構造の発達と粒子加速を説明する統一モデル
- オーロラアーク構造の発達にともなう二次的不安定性の成長
 - •オーロラにともなうシア流からの渦構造変形(K-H不安定)
- 磁気圏のプラズマの有限圧力勾配と磁場曲率効果
 - Ballooningモードとの競合、オーロラのビーズ構造との関連
- 大規模沿磁力線電流によるシア磁場効果
 - 大域的な磁場形状のオーロラ構造への影響評価へ
- オーロラ乱流のシミュレーション
 - オーロラ構造の発達とアルヴェン乱流

フィードバック不安定性理論の拡張

- ジャイロ運動論による磁気圏プラズマの記述
 - オーロラ構造の発達と粒子加速を説明する統一モデル
- オーロラアーク構造の発達にともなう二次的不安定性の成長
 - •オーロラにともなうシア流からの渦構造変形(K-H不安定)
- 磁気圏のプラズマの有限圧力勾配と磁場曲率効果
 - Ballooningモードとの競合、オーロラのビーズ構造との関連
- 大規模沿磁力線電流によるシア磁場効果
 - 大域的な磁場形状のオーロラ構造への影響評価へ
- オーロラ乱流のシミュレーション
 - オーロラ構造の発達とアルヴェン乱流

Observation of Alfven waves and

turbulence in auroral region

Reduced MHD model for the

magnetosphere

- $\delta B \ll \text{Earth's } B$ field, and low- β
- Perpendicular wave length $(x_{\rm f})$

- << parallel wave length (x_s), equilibrium scales (x_s)
- Local flux tube model (periodic in the perpendicular direction)
- Impose uniform electric field E_0 driving the convection flow

$$\begin{cases} \frac{\partial}{\partial t} + \frac{\mathbf{E}_{0} \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla_{\perp} \right) \omega = \frac{B_{0}^{2}}{\rho_{0}} \nabla_{\parallel} \left(\frac{j_{\parallel}}{B_{0}} \right) - \{\phi, \omega\} + v \nabla_{\perp}^{2} \omega \\ \\ \left(\frac{\partial}{\partial t} + \frac{\mathbf{E}_{0} \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla_{\perp} \right) \psi = \frac{1}{B_{0}} \nabla_{\parallel} (B_{0} \phi) + \frac{\eta}{\mu_{0}} \nabla_{\perp}^{2} \psi \\ \\ j_{\parallel} = \frac{B_{0}}{\mu_{0}} \nabla_{\perp}^{2} \psi \quad , \quad \omega = \nabla_{\perp}^{2} \phi \quad , \quad \nabla_{\parallel} = \mathbf{b}_{0} \cdot \nabla + \{\psi, \} \\ \\ \{f, g\} \equiv \mathbf{b}_{0} \cdot \nabla_{\perp} f \times \nabla_{\perp} g \end{cases}$$
 Magnetosphere

2017/9/6-8

Two-fluid equations for the

ionosphere

• Continuity of electron and ion density (height-integrated)

$$\frac{\partial n_e}{\partial t} + \frac{\mathbf{E} \times \mathbf{B}_0}{B_0^2} \cdot \nabla_{\perp} n_e = \frac{j_{\parallel}}{eh} - \alpha n_i n_e \qquad \frac{\partial n_i}{\partial t} + \nabla_{\perp} \cdot \left(\mu_{\mathrm{P}} n_i \mathbf{E} + D \nabla_{\perp} n_i\right) = -\alpha n_i n_e$$

coupled with the quasi-neutrality equation $(n_i = n_e)$

=> Continuity of the ionospheric density and current

$$\frac{\partial n}{\partial t} + \frac{\mathbf{E} \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla_{\perp} n = \frac{j_{\parallel}}{eh} - \alpha n^{2}$$
$$\nabla_{\perp} \cdot (\mu_{\mathrm{P}} n \mathbf{E}) - \frac{\mathbf{E} \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla_{\perp} n = D \nabla_{\perp}^{2} n - \frac{j_{\parallel}}{eh} \quad , \qquad \mathbf{E} = -\nabla_{\perp} \phi$$

• Here, we ignore nonlinear polarization terms

Closure relations

=> Continuity of ϕ and $j_{||}$ => M-I coupling

Magnetosphere

Ionosphere

Vorticity distributions

(Watanabe+ New J. Phys. 2016)

Turbulence transition through the secondary instability

Nonlinear stage of the feedback instability with constant drive

 Time history of density (left) and electromagnetic field energy (right)

 Transition to the Alfvenic turbulence (δE²~δB²) after saturation of the feedback instability growth

2017/9/6-8

フィードバック不安定性理論の拡張

- ジャイロ運動論による磁気圏プラズマの記述
 - オーロラ構造の発達と粒子加速を説明する統一モデル
- オーロラアーク構造の発達にともなう二次的不安定性の成長
 - •オーロラにともなうシア流からの渦構造変形(K-H不安定)
- 磁気圏のプラズマの有限圧力勾配と磁場曲率効果
 - Ballooningモードとの競合、オーロラのビーズ構造との関連
- 大規模沿磁力線電流によるシア磁場効果
 - 大域的な磁場形状のオーロラ構造への影響評価へ
- オーロラ乱流のシミュレーション
 - オーロラ構造の発達とアルヴェン乱流

大規模沿磁力線電流と磁気シア

オーロラ領域に流れる大規模沿磁力線電流は、平衡磁場に
 準静的なシア成分を与える

沿磁力線電流強度 $j_{||} \sim 1 \,\mu \text{A}/\text{m}^2$

南北スケール Δ ~ 100 km >> アーク幅・間隔 δ ~ 10 km

磁気シア $s = (dB_y/dx)/B_0$ ~ $\mu_0 j_{||}/B_0 \sim 2.5 \times 10^{-5} \,\mathrm{km}^{-1}$

磁力線長 $l = 10^5$ km では $sl \sim 2.5$

- Alfven波の伝播に影響する可能性
- ・FACの方向、強度によるフィードバッ ク不安定性への効果は?

磁気座標を用いた不安定性解析

磁気シアを加えた磁気座標を用いてMHD方程式を記述し、
 磁気圏の固有方程式を導出(直線磁場, p無視)

$$\begin{split} \xi &= x - \hat{s} \frac{y}{L_{\perp}} z, \quad \eta = y, \quad \varsigma = z \\ \nabla_{\perp}^{2} &= \frac{\partial^{2}}{\partial \xi^{2}} + \left(\frac{\partial}{\partial \eta} - \hat{s} \varsigma \frac{\partial}{\partial \xi}\right)^{2}, \quad k_{\perp}^{2} = k_{\xi}^{2} + \left(k_{\eta} - \hat{s} \varsigma k_{\xi}\right)^{2} \end{split}$$

$$\frac{\partial \psi}{\partial t} = \frac{\partial \phi}{\partial \varsigma} + D_{\eta} \nabla_{\perp}^{2} \psi, \quad \frac{\partial}{\partial t} \nabla_{\perp}^{2} \phi = V_{A}^{2} \frac{\partial}{\partial \varsigma} \nabla_{\perp}^{2} \psi + D_{\nu} \nabla_{\perp}^{4} \phi$$

 電離圏プラズマの分散関係式と結合して固有値・固有関数を を求める

STEシミュレーション研究会@神戸大学

X

• $\theta = \tan^{-1}(\mu_{\rm P}/\mu_{\rm H})$ での理想MHDでの解析例 ($D_{\eta}=D_{\nu}=0$)

15

共鳴周波数の磁気シア依存性

- *k*_⊥*L* → ∞ での共鳴周波 数を比較 (*m* = 0)
- •磁気シアの増大とともに 共鳴周波数上昇
- シアの符号に対する非対
 称性 => 朝夕非対称性
- 近似解は大まかな磁気シア依存性を再現

 |sζ|<<1の場合、φ, j_{||}に関する固有方程式を近似すると減衰 振動の方程式に帰着

$$\frac{\partial^2 \phi}{\partial \zeta^2} - 2\beta \frac{\partial \phi}{\partial \zeta} + \Omega^2 \phi = 0$$

・その解は

$$\phi = \frac{1}{2} \frac{\Omega}{\Omega'} e^{\beta(\zeta-l)} (e^{i\Omega'(\zeta-l)} + e^{-i\Omega'(\zeta-l)})$$

$$\Omega' = \sqrt{\Omega^2 - \beta^2}, \qquad \beta = \frac{sk_{\xi}k_{\eta}}{k_{\xi}^2 + k_{\eta}^2} = \frac{1}{2} s \sin 2\theta$$

$$k_{\perp}L \rightarrow \infty \operatorname{ctl}\phi(0) = 0 \operatorname{ctsb}, \quad \Omega'l = m\pi \ (共鳴条件) \operatorname{bbs}$$

$$\Omega l = \sqrt{(m\pi)^2 + (\beta l)^2}$$

• 磁気シアによる共鳴周波数の上昇

磁気シア効果がもたらすオーロラ 発達の多様性

- 磁気シアによる周波数・成長率影響(ideal)
- 磁気シアの符号への依存性(背景電流のup-downに対応)
- 粘性や抵抗性散逸効果の増大 (アーク構造の stretchによる)
 ニ> 沿磁力線電流の向き・強度への依存性
 => 朝方、タ方、極冠域でのオーロラの発達特性に影響
- 大域的な特性と同時に局所構造へも影響

 => 電場とアーク構造の相対的な関係 (シア効果のの依存性)
 => オーロラアークの変形・非線形構造 (2次構造)への影響
 => バルーニング・モードの安定化に働く
- ・現実的な磁場配位での解析、観測との比較へ

まとめ

- 大規模沿磁力線電流によるシア磁場効果
 - 大域的な磁場形状がオーロラ構造へ影響を及ぼし得る
 - 朝夕非対称性
 - ・共鳴周波数の磁気シア依存性の摂動論的解析
- オーロラ乱流のシミュレーション
 - オーロラ構造の発達の結果、アルヴェン乱流へ遷移(ただし十分な駆動源がある場合;駆動乱流)
 - 電離層密度の微細構造形成
 - 密度微細構造の非線形電場ドリフト