プラズマバブルシミュレーションの高解像度化

横山 竜宏

情報通信研究機構

Ionosphere

- Plasma density is several orders lower than neutrals.
- Atmosphere-Ionosphere coupling is very important.
- 80-300km: too high for balloon, too low for satellite.

Scintillation

- Fresnel diffraction $\sqrt{2}D_F = \sqrt{2\lambda z} \approx 400 \text{m}$
- Serious problem for communication and navigation.

Linear Growth Rate of Rayleigh-Taylor Instability

Plasma Bubble

High-Resolution Bubble (HIRB) Model

- Dipole orthogonal coordinate
- Grid size is 300 m in zonal, 700m in vertical around F peak.
- $(NX(B_{||}), NY(B_{L}), NZ(B_{\phi})) = (501, 1821, 1120)$
- O⁺ (F region), NO⁺ (E region)

Equations

$$\frac{\partial N_i}{\partial t} + \nabla \cdot (N_i \mathbf{V}_i) = S_i \tag{1}$$

$$e(\mathbf{E} + \mathbf{V}_i \times \mathbf{B}) + M_i \boldsymbol{g} - \frac{\nabla (N_i k_B T)}{N_i} + M_i \nu_{in} (\mathbf{U} - \mathbf{V}_i) = 0 \quad (2)$$
$$-e(\mathbf{E} + \mathbf{V}_e \times \mathbf{B}) + M_e \boldsymbol{g} - \frac{\nabla (N_e k_B T)}{N_e} + M_e \nu_{en} (\mathbf{U} - \mathbf{V}_e) = 0 \quad (3)$$
$$\nabla \cdot \mathbf{J} = \nabla \cdot \left[e \left(\sum_i N_i \mathbf{V}_i - N_e \mathbf{V}_e \right) \right] = 0 \quad (4)$$

- Plasma density is updated by CIP method from Eq. (1)
- Polarization electrostatic potential is solved from (2)-(4).

Vertical/Horizontal Density Distribution

Yokoyama et al. (2014)

West Wall Structuring

Yokoyama et al. (2015)

 Two seeding wavelength + eastward E field + eastward neutral wind (low resolution (~1km))

Density and Upward Velocity (Zonal cut)

550 km

Jicamarca 50MHz Radar Observation

Kelley et al. (1981)

Irregularity Scales and Potential Mechanisms

Singh and Szuszczewicz (1984)

Fresnel scale for GPS scintillation

Spectral Characteristics from In Situ Observations

Singh and Szuszczewicz (1984)

- Minimum grid size was 2.5km.
- Extrapolate spectrum down to Fresnel scale, then apply phase screen model to estimate S4 index.

Test Cases

 Two seeding wavelength + eastward E field + eastward neutral wind

Low Resolution vs High Resolution

Effect of Cross-Field Diffusion

Zonal Spectral Characteristics

Vertical Spectral Characteristics

Comparison with Past Satellite Observations

Comparison with Past Satellite Observations

Spectral Characteristics from Recent Observations

C/NOFS (Rodrigues et al., 2009)

ROCSAT-1 (Su et al., 2001)

C/NOFS Data Analysis by Discrete Wavelet Transform

C/NOFS Data Analysis by Discrete Wavelet Transform

$$S(k) = \begin{cases} C_1 k^{-p_1} & (k < k_0) \\ C_2 k^{-p_2} & (k > k_0) \end{cases}$$

 k_0 is the break scale wavenumber

Rino et al. (2014)

Preliminary Wavelet Analysis on Simulation Data

- Two-component power-law is seen in both C/NOFS and simulation data.
- More analyses are still ongoing.

Future Directions

Summary and Future Work

- The spatial resolution of the high-resolution bubble (HIRB) model has been improved to be as small as 300m.
- Intermediate scale irregularities (~1km) are well developed in the model. Spectra have two power-law indices with a break scale at around 2-5 km.
- The spectral characteristics are generally consistent with C/NOFS in situ observations.
- What determines the power-law indices and the break scale is not clear.
- Fresnel scale irregularities that cause GPS scintillation (300-400m) may be directly simulated in the near future.