雲と大気大循環

惑星の雲・エアロゾル

- 惑星のアルベドを支配
- 散乱温室効果
- 上層大気へ輸送され宇宙空間への 散逸に至る化学種を制限

- Solar energy flux reaching the Venus surface (17W/m²) is much less than that of the Earth (168W/m²).
- Greenhouse effect of massive CO₂ and small amount of H₂O explains the high temperature.

Fig. 2. Comparison between the observed temperature structure of Venus' lower atmosphere and that of several models, which are described in the main text.

Pollack et al. (1980)

Horizontal Linear Polarization

Polarization of sunlight reflected by Venus

Refractive index = 1.44 \rightarrow consistent with H₂SO₄-H₂O solution

Effective radius ~ 1 μ m

Hansen & Hovenier (1974)

FIG. 7. Observations and theoretical computations of the polarization of sunlight reflected by Venus at $\lambda = 0.99 \ \mu$ m. The observations were made with an intermediate bandwidth filter, the X's being obtained by Coffeen and Gehrels (1969) in 1959–67 and by Coffeen (cf. Dollfus and Coffeen, 1970) from 1967 to March 1969, and the O's being obtained by Coffeen (cf. Dollfus and Coffeen, 1970) in May-July, 1969. The theoretical curves are for spherical particles having the size distribution (8) with b = 0.07. The different theoretical curves are for various refractive indices, the effective particle radius being selected in each case to yield closest agreement with the observations for all wavelengths.

Microphysical properties of Venus clouds

- H_2SO_4 - H_2O droplets with radii r < 5 μ m
- Smallest mode (including sub-cloud haze) might be condensation nuclei whose composition is unknown.
- Size distribution is variable.

微物理的性質

- H₂SO₄-H₂O液滴、r < 5 μm
- ・ 最小モード (sub-cloud hazeを含む)は凝結核である可能 性あり。凝結核の組成は不明。
- 粒径分布は測るたびに違う

Three-layered structure – Different dynamical and chemical regimes at different altitudes?

Three-layered structure – Different dynamical and chemical regimes at different altitudes?

赤外加熱と日射加熱

- 下層大気からの赤外線は雲層下部を加熱して成層を不安定化
- 日射は雲層上部を加熱して成層を安定化
- →これらのバランスで対流強度が決まる

全球平均条件での対流構造 <u>鉛直速度</u>

温位擾乱

H₂SO₄ vapor profiles

Sulfur-rich atmosphere: origin of H₂SO₄

Figure 24. The SO_2 mixing ratio vertical profile retrieved for ISAV 2 (data points) is compared to that determined for ISAV 1. There is a large difference of structure above 40 km, while the profiles are nearly identical below 40 km. A peak of 210 ppm is observed at 43 km in the ISAV 2 data.

Bertaux et al. (1996)

Origin of clouds

40

• SO₃ rapidly reacts with H₂O: SO₃ + H₂O \rightarrow H₂SO₄

•Elemental sulfur (S) can serve as condensation nuclei.

Origin of clouds

金星の硫黄サイクル

Zhang et al. (2012)

Ground-based observations of cloud-related gaseous species

Pollack et al., Icarus 103, 1, 1993

Pollack et al., Icarus 103, 1, 1993

SO, SO₂ profiles above cloud observed by Venus Express solar occultations (Belyaev et al. 2011)

 Enhancement at high altitudes cannot be explained by traditional photochemical models.

(Zhang et al. 2012) Artificial H_2SO_4 source added above 90 km:

Transport of cloud particles to the upper atmosphere by winds ? → Open question

Fig. 8. Same as Fig. 2, for the sulfur oxides. The SO_2 and SO observations with errorbars are from the Belyaev et al. (2012). The temperature at 100 km is 165–170 K for the observations. The OCS measurement (0.3–9 ppb with the mean value of 3 ppb) is from Krasnopolsky (2010).

Material transport by meridional circulation

Akatsuki UVI 283nm

Schubert (1983)

2次元モデルによる考察

(Imamura & Hashimoto, J. Geophys. Res., 1998)

- Transport and condensation of H_2SO_4 and H_2O
- Particle radius is fixed: $r = 1.15 \ \mu m$ for $z > 58 \ km$
 - $r = 3.65 \ \mu m$ for $z < 58 \ km$
- H_2SO_4 production at 60-64 km

Possible planetary-scale H₂SO₄ cycle

Imamura & Hashimoto (2001)

70km

Earth's stratospheric aerosol lifecycle

extinction ratio

FIG. 9. Extinction ratios from the SAGE II satellite system in various latitude ranges. The extinction values were measured in April 1989 in the Southern Hemisphere. We have removed extinction ratios greater than 7 at lower altitudes for these are indications of tropospheric clouds.

あかつきIR2による2.26µm夜面画像

その他の輸送過程

Y-feature

- Kelvin wave?

'Cells' near sub-solar region

全球平均条件での対流構造 <u>鉛直速度</u>

温位擾乱

How are SO_2 and H_2O transported upward across the cloud layer ?

Venus in UV

"Venus is completely covered by clouds that are featureless in the visible but exhibit variable near-ultraviolet features long known to ground-based observers" (Rossow et al. 1980)

Fig. 4. Schematic diagram defining the basic types of cloud features observed in Venus ultraviolet images. The two views depicted here typically occur 2 days apart and represent the maximum and minimum tilt configurations, respectively. The tick marks on each circle indicate 20° and 50° of latitude in each hemisphere.

Origin of visible-UV absorption

- Absorbing material at far UV (<320nm) is mostly SO₂
- Absorption at near UV (>320nm) is a mystery. Candidate species are S, S₂O₂, S₂O, FeCl₂, etc.

Figure 6-1. The Monochromatic Bond Albedo of Venus as a Function of Wavelength (Moroz, 1983 -Normalized to the Integrated Albedo A = 0.76). The points show the wavelength dependence of the maximum contrast between dark and light UV features (Coffeen, 1977).

Variability of SO₂ above clouds

Geophysical Research Letters

RESEARCH LETTER

10.1002/2015GL064088

Key Points:

- VMC was able to sound Venus surface through the atmosphere transparency window
- Transient bright phenomena were observed in the Ganiki Chasma zone
- They are consistent with hypothesis of lava lakes on the surface

Supporting Information:

- Readme
- Texts S1 and S2, and Table S1
- Figure S1
- Figure S2
- Figure S3

Correspondence to: E. V. Shalygin,

Active volcanism on Venus in the Ganiki Chasma rift zone

E. V. Shalygin¹, W. J. Markiewicz¹, A. T. Basilevsky^{1,2,3}, D. V. Titov⁴, N. I. Ignatiev⁵, and J. W. Head³

¹ Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, ²Vernadsky Institute, Moscow, Russian Federation,
³ Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA,
⁴ ESA-ESTEC, Noordwijk, Netherlands, ⁵ Space Research Institute, Moscow, Russian Federation

Abstract Venus is known to have been volcanically resurfaced in the last third of solar system history and to have undergone a significant decrease in volcanic activity a few hundred million years ago. However, fundamental questions remain: Is Venus still volcanically active today, and if so, where and in what geological and geodynamic environment? Here we show evidence from the Venus Express Venus Monitoring Camera for transient bright spots that are consistent with the extrusion of lava flows that locally cause significantly elevated surface temperatures. The very strong spatial correlation of the transient bright spots with the extremely young Ganiki Chasma, their similarity to locations of rift-associated volcanism on Earth, provide strong evidence for their volcanic origin and suggests that Venus is currently geodynamically active.

Figure 2. Maps of relative brightness in the VMC IR2 channel. Each panel shows the ratio of the mosaic composed from images obtained in the given to the averaged VMC mosaic of the region. Orbital mosaics were obtained for specified dates in orbits: (a) 793, (b) 795, and (c) 906. Ganiki Chasma and object "A" in orbit 795 are outlined with white lines in each panel. The grid size is 5° by 5°, that is \approx 528 km at the equator.

Massive eruptions several hundred million years ago ?

Radar image of Venus surface by NASA's Magellan spacecraft

Wrinkle ridges may have been formed by thermal stress caused by a sporadic enhancement of greenhouse effect (H_2O ?) in the past.

Bullock & Grinspoon (2001)

FIG. 11. Case 3: Rapid outgassing (100 Myr, 1 km), with exospheric escape (160 Myr) and SO₂ reactions with the surface. (a) is the evolution of atmospheric mixing ratios as a function of time. The solid line is for H_2O , dot-dashed line is for SO_2 . (b) is the evolution of planetary albedo. (c) shows the evolution of cloud optical depths as a function of time. (d) shows the evolution of surface temperature as a function of time.

Stabilization of Venus' climate by a chemical-albedo feedback (Hashimoto & Abe, 2000)

Dust in the Martian atmosphere

- Micrometer-sized small mineral particles float in the atmosphere with a background optical thickness of 0.1-0.5.
- The dust loading changes with time and space.
- The dust serves as a heat source in the atmosphere by absorbing sunlight.

Fig. 7. Globally-averaged daytime (local time ~ 1400) dust optical depth at 1075 cm⁻¹ (scaled to an equivalent 6.1-mbar pressure surface) as a function of season (L_s). Three martian years are represented: Mars Year 24 (MY 24) (\blacksquare), MY 25 (\square), MY 26 (×). During the planet-encircling dust storm of 2001 (MY 25), globally-averaged dust opacity reached 1.3 at $L_s = 205-215^{\circ}$.

Dust as a heat source

- Absorption of solar radiation
 - much stronger than the greenhouse effect of CO₂, which is only several kelvins
 - much stronger than cloud albedo effect and latent heat

Radiative-convective model

Gierasch & Goody (1972)

FIG. 1. Martian temperature calculations. The stippled area represents temperatures reported by Kliore *et al.* (1972) and Hanel *et al.* (1972). The lines are theoretical profiles for a pure CO₂ atmosphere, at 1600 and at 0600 hours (the coldest time). Both theory and observation refer to mid-latitude summer conditions. The tags indicate the ground temperatures. In the case of the 1600 theoretical profile a strong boundary layer is indicated.

FIG. 2. Same as Fig. 1 except that the atmosphere contains an extra solar absorber, evenly mixed with the atmosphere at all levels, and having an optical depth of 0.10 at all wavelengths. Note the weak boundary layer at 1600.

Fig. 11. Aerosol extinction profiles retrieved from the group-mean brightness profiles (a) at the morning limb, and (b) at the evening limb. The confidence intervals are shown for the aerosol profiles retrieved from the group 1 brightness profiles. These error bars are based on the analysis of all uncertainties of the retrieval procedure. The vertical bar shows the uncertainty in the limb positioning. Numerals by the curves correspond to the group numbers in Tables 1 and 2

Phobos-2 infrared sounding

Titov et al. (1997)

Dust storms

regional storm

Dust devils

• Source of background atmospheric dust ?

Figure 12. The LMD-MMM storm simulation with lifting and no initial dust perturbation. Same as Figure 4 except that local times range from 0800 to 1800 and longitude-altitude sections are obtained at latitude 1.5° S.

Global dust storm

- Global dust storms tend to occur in southern spring-summer
- Positive feedback between dust heating and the intensification of winds is expected in the development of global dust storms.

Episodic occurrence of major dust storms \rightarrow irregular nature of Martian meteorology

Fig. 7. Timeline of the detection of regional and planet-encircling obscurations, clouds and storms. These events are listed in Table III. Earth dates are indicated at the top, and perihelion (and thus Mars years) at the bottom of the dust-storm timeline. The second timeline indicates periods of photographic coverage of Mars, defined in terms of the percentage of L_s degrees that photographs were taken. Coverages of <1%, of 1 to 20% and >20% are indicated. The third timeline indicates the apparent size of Mars, as seen from Earth, on a scale of 0 to 30 seconds of arc (figure from Zurek and L. Martin 1992).

Dust storms in numerical models

Figure 3. Multi-year globally averaged 9 μ m opacity for the infinite surface dust simulation (black solid) the finite surface dust simulations (colored solid and dashed lines).

Kahre et al. (2005)

Figure 7. (top) Map of net annual dust deflation (shaded regions) and deposition (nonshaded regions) for the baseline simulation. The heavy black boxes outline the three low thermal inertia regions: Tharsis (left), Arabia (middle), and Elysium (right). (bottom) MOLA topography smoothed to the model's resolution. Contours indicate height above (solid) or below (dotted) the MOLA geoid in meters. The contour interval is 1000 m.

Observation by Mars Global Surveyor

Long-term change of surface dust?

Surface dust tendency between pre- and post-global dust storm in 2001

(Szwast et al., 2006)

H₂O ice clouds on Mars

HST Mars images

Polar caps

North

South

H_2O ice + CO_2 ice

- Seasonal variation
- Residual polar caps in summer
 - H₂O only on the north
 - $-H_2O + CO_2$ on the south
- Southern CO₂ ice serves as a cold trap of H₂O ?

Mars Odyssey Neutron Spectrometer (NS) and High-Energy Neutron Detector (HEND)

Subsurface ice

Global Distribution of Water on Mars

Latitude

East Longitude

Phoenix Mars Lander

Figure 8. Color indicates depth to the ice table in g cm⁻² when ice is in equilibrium with the atmospheric water vapor. Ground ice is unstable in the white area. Black segments indicate finite burial depths larger than 150 g cm⁻². Missing data points are shown in gray. Assumed volume fraction of ice is 40%, but the geographic boundary between icy and ice-free soil is independent of the ice fraction. Solid contours indicate water-equivalent hydrogen content in percent determined from neutron spectroscopy [*Feldman et al.*, 2004]. The dotted lines are 200 J m⁻²K⁻¹s^{-1/2} contours of thermal inertia.

Schorghofer and Aharonson (2005)

Comparison with models

Near equilibrium ?

色: 大気中の水蒸気との平衡 状態を仮定して計算される氷床 までの深さ

実線: 中性子分光観測から見 積もられた水含有量

→現在の気候とだいたい 平衡状態か

しかし中・低緯度の氷は 説明がつかない

Seasonal variation of dust, clouds, and H₂O vapor observed by an infrared spectrometer (TES) on Mars Global Surveyor

Seasonal cycle of Martian water

- 北極冠の消長が全体を駆動
- 北半球の春~夏に北極冠が昇華して北極域の水蒸気濃度が上昇、これが(この時期の弱い)水平渦で低緯度に拡散的に運ばれる。
- 低緯度に運ばれた水蒸気の一部は赤道越えのハドレー循環で南半球へ
- NPCS 北半球の秋~冬には北極冠で • SCR 凝結により水蒸気濃度が低下 Frost deposit し、南北濃度勾配が逆転する SCI ため、傾圧不安定などに伴う水 平渦で低緯度から北極域に水 Cross-equatorial Transport 蒸気が拡散的に戻る。低緯度 Latitude (Hadley cell) の水蒸気量はそれまでの水蒸 Cross-equatorial transport 気輸送の履歴で決まる。 ke o Frost deposit SCR

Spring

Horizontal mixing
Condensation/sublimation
Quasi-solid return
Seasonal cap edge

Aphelion

Figure 3. Chart describing the principal events affecting the Martian water cycle over the course of a year. NPCS stands for North Polar Cap Sublimation; SCR stands for Seasonal Cap Recession.

Summer

180

Ls

Fall

270

perihelion

360

Winter

What's MMX Objective Science Probe Member Links News 🛛

Martian Moons exploration

火星衛星へのサンプルリターンを狙っている探査機です。 MMXの実現によって様々な技術的向上が期待され、 その成果によって太陽系の惑星形成の謎を解く鍵が得られるでしょう。

NEW 最新情報

Twitter

- 2017.05.17 ニュースページを公開しました。上のタブのNewsから見 ることができます。
- 2017.05.17 Twitterアカウントができました。(@mmx_jaxa_jp)
- 2017.04.07 メンバー写真を更新しました。
- 2017 04 05 ホームページを公開しました

MMX ミッション機器

- ガンマ線・中性子分光計:地下の物質分布、特に氷が 存在の有無を調査
- 広角分光カメラ:7つの画像センサを用いて、7色の画像を同時に取得
- 近赤外分光計:表層の水分子や水を含む鉱物を観測
- 望遠カメラ: 20 km離れたところから40 cmの岩石を見 つけることが可能
- レーザ高度計:表面の凹凸を調査
- ダスト計測器:ダストが浮遊しているかを観測
- イオンエネルギー質量分析:衛星周辺の粒子を調査

Controlling factors of Martian climate

• Water cycle

- Atmosphere-surface water exchange controls the longterm evolution of water reservoirs
- The seasonal/diurnal cycle controls the amount of water in the atmosphere, thereby influencing escape to space
- Dust lifting
 - Radiative effect of dust controls the surface/atmospheric temperature, thereby determining the stability of surface water
 - Radiative effect of dust controls the water vapor content in the upper atmosphere and the vertical transport of atmospheric constituents, thereby influencing escape to space

Water cycle on Mars

Stability of the southern polar cap

localized water vapor transport and phase change : keys to understand water cycle and reservoir stability

2

Fouchet et al. (2007)

-30

-60

-90

-180

-90

E Longitude

90

obtain snapshots of high-resolution water vapor distribution and did not observe formation/evaporation of localized clouds

Fast, localized dust storms : key to understand dust lifting and anomalous dust distribution

Meridional cross section of dust mixing ratio

temporal development

"Rocket dust storm": source of

high-altitude dust?

Limitation of observations from polar, low-altitude orbiters

MOC images taken on three successive days *Too sparse in time*

Concept of trace gas observations by Trace Gas Orbiter *Too sparse in space*

High-altitude orbit of MMX: an ideal platform for continuous, high-resolution monitoring

Cloud

Near-IR Imaging spectroscopy

•Water vapor (

- Water vapor, CO
- •Dust, cloud
- •Surface pressure

Imaging spectroscopy (MacrOmega)

- Mapping of H₂O, CO₂ (surface pressure) and CO column amounts by near-IR spectroscopy of reflected sunlight
 - Multi-pixel FOV combined with the scanning by spacecraft attitude control enables acquisition of 2-D maps
- Dust, clouds

Mars Express /OMEGA

Imaging clouds and dust (WAM)

 Clouds (blue) and dust (red) are well distinguished by using multiple filters

HST Mars images

Importance of successive imaging

One global image per one day similar to mosaics by MOC or MARCI

Continuous global monitoring from the Mars orbiter

(provided by Ogohara)

Changing views of Martian atmospheric science

Before

After

Observed planetary-scale distributions of water vapor, clouds, dust and other species are interpreted based on numerical models

Transport processes are directly detected and combined with meteorological data (with the help of data assimilation)

Phobos and Mars as seen from the Phobos-observation orbit

They have a similar apparent size. (Why don't you observe Mars using instruments that we already have for Phobos ?)

Summary

- Diurnal cycles and localized events are expected to play crucial roles in the Martian climate system. Such processes have not been well observed in previous Martian missions. Observations in MMX from a high orbit will achieve a breakthrough via continuous, high-resolution global monitoring of dust, clouds, water vapor, and minor gases.
- Expected outcomes
 - Spatial distribution of water vapor at fine scales
 - How water vapor emerges at specific locations, flows over long distances, and forms clouds
 - Location, local time, and timescale of localized dust lifting
 - How the lifted dust clouds spread and become diffuse