惑星研究集会@CPS, 2017/2/23

modeling small scale processes in the ocean Lagrangian frazil ice simulation using a Particle-in-Cell type ocean model

Yoshimasa Matsumura

Institute of Low Temperature Science, Hokkaido Univ.

Introduction

Sea ice cover controls atmosphere-ocean heat exchange

Solid Ice cover has very low thermal conductivity (insulating effect) \rightarrow Reduce upward heat flux \rightarrow Restrict new ice formation

However, the state of newly formed sea ice highly depends on the condition of the ocean surface.

Turbulent sea surface condition forms **grease ice**, **mixture of sea ice and small frazil crystals**, which has less insulate effect because seawater is directly exposed to the cold atmosphere even after freezing begins.

Introduction

Sea ice cover controls atmosphere-ocean heat exchange

Sea ice models widely used in OGCMs/CGCMs can not explicitly deal with such difference of the sea ice state, Uncertainty in air-sea heat flux estimation, particularly in the period of active new ice formation

Frazil crystals in supercooled seawater

Surface heat loss \rightarrow ocean surface is supercooled (~0.01K)

 \rightarrow fine frazil crystals precipitated \rightarrow accumulate near the surface

if strong wind: grease ice (granular ice)

otherwise:

- Drucker and Martine (2003): Direct observation of supercooling and frazil at 20m depth by upward sonar
- Smedsrud (2001)

Laboratory experiments, Frazil crystals of up to 2cm diameter

- Ushio and Wakatsuchi (1993): Laboratory experiments, Visualize Frazil crystal, 0.2K supercooling.
- Bauer and Martine (1983):

Laboratory experiments, consolidation and transformation to grease ice.

Smedsrud (2001)

Goal of the present study

- Sea ice component in GCMs does not explicitly deal with grease ice
 → large uncertainty in the period of new ice formation
- Previous modeling studies of frazil ice only deal with grid-averaged quantity, assume constant crystal size
- Explicit simulation of frazil generation and their transition to grease ice has not been performed yet.
- Develop a new modeling framework for ice-ocean coupled system which deal with dynamic and thermodynamic effects of underwater frazil ice by using online Lagrangian particle tracking
- Perform an Idealized experiment of active ice formation at polynyas in the coldest periods.

 \rightarrow Quantitatively estimate the effect of frazil ice/grease ice on the atmosphere-ocean heat exchange and net sea ice production.

"On-line" Lagrangian Particle tracking

- Trace the location and properties (mass, rise/fall velocity etc.) of each particle (dispersive phase) simultaneously with the ocean model (continuous phase), Particle-in-Cell (PIC) type simulation
- Each particle has unique ID and we can trace their history.
 - \rightarrow Particles can dynamically and thermodynamically

affects on the ocean state, i.e., dispersed multi-phase flow

We developed a numerically efficient particle tracking system built-in a 3D non-hydrostatic ocean model

Dynamic coupling of ocean flow and dispersed particles

- Each particles subject to gravity (body force) and pressure-gradient (surface force)
- Buoyancy: difference between gravity and the hydrostatic pressure gradient

$$b = -mg + \rho \downarrow 0 \ \delta g = -m\rho \downarrow s - \rho \downarrow 0 \ /\rho \downarrow s \ g$$

 Residual of pressure gradient: the form drug *f*≈−*S*ρ↓0 *C*↓*D* /*v*−*U*/(*v*−*U*) Cd: depends on the shape and ori

Cd: depends on the shape and orientation, UNKONWN

- Water phase feels sum of the reaction of drug force acts on each particle
 The question is, how to estimate f (or Cd)?
- We assume all particles are in equilibrium state with terminal fall/rise velocity relative to the ocean flow s.t. buoyancy and drug-force is balanced, f=-b (valid if particles are so small that inertia can be ignored)

$$\begin{array}{l} \rightarrow dw/dt = -g - 1/\rho \downarrow 0 \ \partial p/\partial z - 1/\rho \downarrow 0 \ \sum i \uparrow f \downarrow i \\ = -g - 1/\rho \downarrow 0 \ \partial p/\partial z - 1/\rho \downarrow 0 \ \Delta V \sum i \uparrow m \downarrow i \ \rho \downarrow s - \rho \downarrow 0 \ /\rho \downarrow s \\ g = -\rho \uparrow * \ /\rho \downarrow 0 \ g - 1/\rho \downarrow 0 \ \partial p/\partial z \end{array}$$

Dynamic effects of suspended particles yields the change of effective water density ρ^*

Modeled frazil particles

- The actual number of frazil crystals in the real ocean is countless, impossible to simulate all of them
 - Modeled particle as a cluster/packet of many frazil crystals
 - Total ice mass and average size of crystals are simulated for each particles.

Thermodynamics

- Generate frazil particles of the minimum mass when the prognostic insitu temperature falls below the local freezing point (sustainable in-situ supercooling state is not allowed)
- Each particle thermodynamically grows/decays depending on the insitu temperature **relative to the local freezing point** *Tf(S, p)*
- The rate of heat exchange depends on the mean crystal size *d/dt M*Jfrazil = (*T*Jfreeze – *T*Jinsitu)*C*Jp ρ/L γ2MJfrazil /r ρJice

 $dT/dt = L/C\downarrow p \rho \downarrow 0 \Delta V \Sigma cell \uparrow d/dt M\downarrow$

Latent heat absorption/emission

Brine rejection/fresh water supply $dS/dt = S \downarrow 0 - S \downarrow i / \rho \downarrow 0 \Delta V \sum cell \uparrow d/dt$

Buoyant rise velocity

- Inertia of frazil crystal are ignored, i.e., all crystals are in equilibrium with terminal buoyant rise velocity
- In the present model individual crystal is not simulated, just parameterized by using total ice mass of each cluster.

 $w \downarrow rise = w \downarrow 0 M \downarrow frazil / M \downarrow 0$, where $w_0 = 1 \text{mm/s}$ (from Omstedt and Svensson, 1984)

less buoyant force → advected by convection Large particles:

greater buoyant force \rightarrow float up to the surface

Turbulent mixing by wind stirring

- Net vertical transport of frazil particles is realized by Linear interpolation of the predicted ocean current
 - + buoyant rise velocity w_{rise}
 - + Subgrid-scale turbulent eddy transport w_{eddy}
- Downward frazil transport increase potential energy, require energy source: Surface wind stress forcing → SGS EKE (or TKE)

 $\epsilon = 2\nu S \downarrow i j S \downarrow i j, S \downarrow i j = 1/2 \left(\partial u \downarrow j / \partial x \downarrow i + \partial u \downarrow i / \partial x \downarrow j \right)$

• The ratio of energy dissipation used to the turbulent eddy transport "Critical Flux Richardson Number": $R\downarrow f = \Sigma \uparrow mg \uparrow w / \Delta V \rho \downarrow 0 \epsilon \approx 0.15$

efficiency of TKE \rightarrow PE conversion (from Osborn 1980)

Strong surface wind forcing → downward turbulent

transport

Enhanced viscosity of slurry

- Grease ice: viscous mixture of frazil crystals and sea water
 - dynamical effects is represented by enhanced viscosity as a function of solid mass fraction

 $\nu \uparrow * = \nu \downarrow e d d y + \nu \downarrow mol$,

- Sub-grid turbulence model: Smagorinsky-type LES, $\nu \downarrow eddy = (C \downarrow smag \Delta) \hat{1} 2 |S|$
- Molecular viscosity is enhanced as a function of solid mass fraction of ice $\nu lmol = (1+2.5\phi+10.5\phi l^2 + 2.73 \times 10l - 3)$ $ell 6.6\phi \times 10l - 6 m^2/s$

where solid volume fraction

Jased

∑î*≣M↓*frazi

for

ar nuid)

Large crystals tend to float up to the surface \rightarrow viscous grease ice

 $\rho lice \mathcal{B} V$

Insulating effect of surface ice cover

- Increased solid mass fraction at the surface results in insulating effect
- Net heat flux is parameterized by the effective ice thickness:

 $Q = -\gamma \downarrow T \kappa \downarrow \text{ice } /\gamma \downarrow T h \downarrow \text{ice } \uparrow \ast + \kappa \downarrow \text{ice } (T \downarrow \text{air} - T \downarrow \text{surface }),$

where effective ice thickness $h \downarrow ice \uparrow * \stackrel{\text{def}}{=} \int z \uparrow = \exp(-z/\delta)$ razil dz / plice AS Less heat flux Haney type heat relaxation coefficient (40 W m² K⁻¹) Grease ice layer ~O(10 cm) Active thermal convection Frazil generation

A simple idealized experiment

- Ocean component: kinaco (nonhydrostatic, Matsumura and Hasumi, 2008)
 + Lagrangian frazil ice component (developed in the present study)
- Domain: 64m x 64m x 64m, horizontally periodic boundaries.
- Resolution: 1m x 1m x 1m
- Subgrid-model: Smagorinsky-type shear-dependent LES + molecular viscosity enhancement as a function of solid volume fraction
- Initial condition: $\Theta = -1.6^{\circ}C$, S = 30psu uniform
- Air temperature: $-20^{\circ}C$ (Up to $\sim 730 \text{ W/m}^2$ heat flux at the open water)
- Wind forcing: *U* = **10** m/s constant
- Integration for 5 days

Results

Frazil distribution (log scale, blue 10⁻² kg/m³ -- red 10² kg/m³)

Vertical profiles

Surface heat flux and net ice production rate

Compare with the "O-layer" solid ice thermodynamics

Newly developed Lagrangian frazil ice model keeps open water (high heat flux > 500W/m2) relatively longer periods than 0-layer solid ice 41% greater total heat loss and 34% greater total ice production in the initial 24 hours both cases become almost equal after the surface is entirely covered

Idealized coastal polynya experiment \rightarrow wind (10m/s)

Day 1 00:05

Developing polynya experiment: (by Kazuki Nakata, Ph.D. thesis)

Satellite image active polynya (day with 15 m/s offshore wind, air temperature -17°C)

28 kg

Modeled streaks are almost identical to the satellite image

Effective thermal ice thickness in the active frazil polynya Thermal ice thickness \propto (net air-sea heat flux)⁻¹

A. Solid: Equivalent ice thickness corresponds to total ice mass (incl. under water frazil)B. Dotted: y-averaged effective ice thickness (weighted integ. of ice mass near the surface)C. Dashed: simulated thermal ice thickness calculated from net heat loss in the model

A-B: Effect of downward turbulent transport of frazil B-C: Effect of streak-structure formation

Both **turbulent transport (initial stage/near shore)** and **streak-structure (later stage/near ice edge)** contribute to the higher net ice production in the active polynya under strong wind

The simulated thermal thickness (< 5 cm) is quantitatively consistent with satellite (MODIS) brightness temperature in the active polynya

Sediments in Sea ice

- Sea ice (sometimes) contains a lot of small grain sediments
 - ✓ Surface albedo decline, can enhance melting.
 - Transport of trace elements, important on ocean bio-geochemistry.
- Possible origins of sediments in sea ice:
 - ✓ Dust from continents (fallen with snows).

Suspended from ocean floor and entrained (Nurnberg et al., 1994)

A simple idealized experiment

- Ocean component: kinaco (nonhydrostatic, Matsumura and Hasumi, 2008)
 + Lagrangian frazil ice component (developed in the present study)
- Domain: 64m x 32m x 40m, horizontally periodic boundaries.
- Resolution: 1m x 1m x 1m
- Subgrid-model: Smagorinsky-type LES, C is reduced at z < 10m
- Initial condition: $\Theta = -1.6^{\circ}C$, S = 30psu uniform
- Air temperature: $-20^{\circ}C$ (Up to $\sim 730 \text{ W/m}^2$ heat flux at the open water)
- Wind forcing: **5 m/s**
- Initial ocean current: 0.2 m/s

Results

L) Frazil distribution (log scale, blue 10⁻² kg/m³ -- red 10² kg/m³) R) Sediment distribution

Suspension of sediments > $20\mu m$ is rare, consistent with observation

Summary

- A new modeling framework of frazil ice/grease ice by using online Lagrangian particle tracking is developed
- Modeled Lagrangian particle is treated as a cluster of many crystals
- Simulate thermodynamic grows of each particles
- Parameterize buoyant rise velocity, turbulent diffusion, enhanced molecular viscosity, insulating effects etc.
- Successfully simulate the behavior of underwater frazil ice and their transition to the surface grease ice cover
 - ✓ Vertical motion of underwater frazil ice induce latent heat transport
 - Potential supercooling is realized due to the freezing point decline with depth
 - ✓ Frazil ice model retains open water relatively longer periods and hence net heat loss is increased compared with solid ice model (~30% greater ice production in the initial 24h)
- Large domain polynya experiments represents streak-like structure of grease ice
- Sediment entrainment is a key topic of the future works

Future works

- More precise treatment of crystal size spectrum:
 - ✓ Very sensitive to the grows/melt rate and rise velocity
 - \checkmark Should be investigated by direct observation.
- In-situ supercooling state:
 - ✓ Relaxed in a single time step (1sec.) in the present model.
 - ✓ Up to O(10) mK supercooling is observed in reality.
 - ✓ What is seeding nuclei? How many?
- Consolidation:
 - ✓ Transit to solid ice (columnar grows) when frazil volume fraction in the grease ice layere becomes sufficiently high (~30%).
 - ✓ Essential to the polynya opening/closing and refreezing of leads.

- Coupled with wave dynamics model
 - ✓ Simulate pancake ice formation
 - Frazil streaks induced by Langmuir circulation