Climate of synchronously rotating planet
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Introduction



Exoplanets

The number of discovered exoplanets is increasing

exoplanet.eu, 2017-02-20
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Exoplanets have characteristics different from
those of solar system planets



Synchronously rotating planet

* Many low-mass exoplanets are tidally locked.
— They have fixed dayside and nightside

 Some of them may be terrestrial planet
— They are new objects for climate research
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* Climate of synchronously rotating planets?



Examples of atmospheric state

Time mean field (365 day) with changing viewpoint

0*=1.0, S=2000W/m? 0*=0.5, S=1600W/m? 0*=0.1, S=1366W/m?

Yellow dot: Colors: surface temperature
subsolar point  Vectors: surface wind
Contours: precipitation

Solar constant: S*
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Two key parameters

* Climate state depends on
(1) planetary rotation rate
(2) solar constant
* Planetary rotation rate changes atmospheric
circulation pattern
— Q-dependence experiment for a gray atmosphere

* Solar constant determines whether equilibrium
state can be obtained The runaway greenhouse state

— S-dependence experiment e Komabayashi -Ingersoll limit
with non-gray atmosphere o/~ ]
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1D grey model (Nakajima et al., 1992)



 Atmospheric circulation model: DCPAM5
— http:www.gfd-dennou.org/library/dcpam/

* For various experiments with a same framework
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Tone pattern differs among figures.

e Basic equations: 3D primitive equations on sphere

* Discretization: spectrum method (horizontal),
finite difference method (vertical)



(Q-dependence
experiment
with gray AGCM

Noda et al. (2017), Icarus



What's problem?

* |In previous GCM experiments,
two kinds of equilibrium states are obtained.

— Joshi (2003): Q*=1
— Merlis and Schneider (2010): Q*=1/365~1
— Edson et al. (2011): Q*=1/100~1

(Q*: planetary rotation rate normalized by the Earth’s value)

Surface temperature (Merlis and Schneider, 2010)
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Physical processes

 Radiation

— Water vapor : gray to IR radiation
— Dry gas: transparent

 Cumulus convection
— Convective adjustment (Manabe et al., 1965)

* Surface flux: Beljaars and Holtslag (1991)

e Vertical turbulent mixing:
Mellor and Yamada (1974) level2.5

* Planetary surface :
ocean with zero heat capacity,
no horizontal heat transport

* No cloud



Experimental setup

Solar flux Synchronously rotating planet configuration

distribution Dayside ENIs[sIS[e[E
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Solar Constant S=1380 [W/m?] (Earth’s value)
Rotationrate Q*=0, .... ,1.0 (18 cases)

* Dry air amount at surface: 10°Pa, Surface albedo : 0.0
 Other parameters have same values to Earth’s

* Resolution: T21L16, Integration Period: 2000 days

* Initial condition : isothermal (280K) rest state with
different random seed (10 member)



Surface temperature for various Q¥
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Regimes of atmospheric structures

 Zonal wind at 6=0.17 level at equator
(zonal mean, time mean) Jonal mean
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Atmospheric structures for various Q*
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North-south asymmetric state
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 Significant asymmetric states appearin 0.2 < 0" < 0.8
* The pattern reverses repeatedly.

 “period” : 10 day-1000day, Non-periodic for large Q

* Also appear in high resolution experiment




Q)" Dependence of energy transport
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« Total energy transport is almost independent of Q"

Day-side OLR is bounded by radiation limit of 1D model
e Radiation limit: Nakajima et al. (1992), Ishiwatari et al. (2002)

(Energy transport) = (Incident flux) — (radiation limit):
independent of Q"




Summary of Q-dependence experiment

* Dependence of atmospheric states of
synchronously rotating aqua-planet on Q is studied
by a gray GCM

* There exists a definite regime boundary between
“'slowly rotating regime’’ and " rapidly rotating
regime”’

* Existence of multiple equilibrium solutions

* There exist a range where asymmetric states
appear

* Summation of sensible/latent heat transport is
almost independent of rotation rate

 Amount of heat transport is constrained by radiation
limit



S-dependence
experiment

with nongray AGCM




What's problem?

GCM experiments for runaway state in recent years
— seem to imply that runaway condition is influenced by multiple processes

Runaway threshold S$=2200W/m? S~ 1500W/m?
Important factor Albedo of dense clouds Drying in subtropics
(Yang et al., 2013) (Leconte et al., 2013)

Our old result: Runaway condition is that global mean stellar flux

exceeds OLR upper limit 450 er limit of OLR
— Ishiwatari et al. (2002) 400 - jation limit)
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In this study, runaway condition is re-examined

— We expect that results obtained by previous studies can be described by a
common condition



Physical processes

Parameterized with methods of terrestrial Meteorology

Radiation

— &-Eddington approximation: Toon et al. (1989)

— Absorption and emission by water vapor, CO,, cloud water:

Chou and Lee (1996), Chou et al (2001)

— Solar radiation is assumed to be same as that of Sun
Cumulus convection

— Relaxed Arakawa-Schubert: Moorthi and Suarez (1992)
Surface flux: Beljaars and Holtslag (1991)
Vertical turbulent mixing: Mellor and Yamada (1974) level2.5

Planetary surface : ocean with zero heat capacity,
no horizontal heat transport

Simple cloud model

— Integrating time dependent equation including generation,
advection, turbulent mixing and extinction

09 0qc qc
—=—v-Vv—0——+F + S, ——
ot do turb c ;7
Sc : Source of cloud water _ Je . extinction of cloud water
—Condensation in large scale condensation scheme TLT _
tuned as 7,7 = 1500sec

—Detrain from could top in RAS scheme under Earth condition(T42L26)



Experimental setup

Solar flux Synchronously rotating non-Synchronous
distribution planet configuration configuration (Earth-like)
with diurnal and seasonal
changes

~ latitude

Ioi}lgitude il
Solar Constant S=1366, 1600, 1800, 2000, 2200 [W/m?]
Rotationrate Q*=0, 0.1, 0.5, 1.0

Cloud T11r=0 (no cloud), 1500 [sec]
extinction time

* Dry air amount at surface: 10°Pa, Surface albedo : 0.15
* Resolution: T42L26, Integration Period: 3 years



Time evolutions of Ts and OLR

Global mean values for Q* =1.0

Synchronous Non-synchronous
w/ cloud  w/o cloud w/ cloud w/o cloud
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Atmospheric structures for various S
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Runaway thresholds

(Q* dependence of threshold value of S and OLR
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Horizontal distributions of OLR

* Synchronous cases: Zonal (meridional mean) 0*=1.0

W m-2) ~ w/cloud w/o cloud
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Day-night energy transport

Night side heat budget (S=1366W/m?, 365 day mean)

w2 wcloud (r; = 1500sec) wm2 W/o cloud  (z.7= 0sec)
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* Dependence of day-night heat transport on Q* is small

(similar to gray case: Noda et al., 2017)

e (total energy transport)
= (absorbed stellar flux) — (dayside OLR)
= (absorbed stellar flux) — (OLR upper limit)
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Summary of S-dependence experiment

e Re-examination on the occurrence condition for the
runaway greenhouse state

— Synchronous configuration vs. Non-synchronous
configuration (Earth-like), case w/ cloud vs. case w/o
cloud

* OLR seems to have upper limit values

— Upper limit of OLR is about 300 W/m? regardless model
configuration

— The deviation of the upper limit is only 50 W/m?
* Global mean absorbed stellar flux changes
according to model configuration
— This causes the difference of Solar constant threshold
— This result is consistent with the results of previous studie



Concluding remarks

* In our experiments for synchronously rotating
planets, the upper limit of OLR emerge.

* It constrains day-night energy transport

* It determines solar constant at which the runaway
greenhouse state emerges

 Remaining problems
— Examination with 1D-model
— Refinement of cloud model

— Experiments on other configurations: cases with
thick atmosphere , case with reduced S

— Ocean dynamics!



