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Introduction



• The number of discovered exoplanets is increasing

• Exoplanets have characteristics different from 
those of solar system planets

Exoplanets

http://exoplanet.eu/diagrams/?t=h



Synchronously rotating planet
• Many low-mass exoplanets are tidally locked.

– They have fixed dayside and nightside
• Some of them may be terrestrial planet

– They are new objects for climate research

• Climate of synchronously rotating planets?
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Examples of atmospheric state

Colors: surface temperature
Vectors: surface wind
Contours: precipitation

Yellow dot: 
subsolar point

Time mean field (365 day) with changing viewpoint

Ω*=0.1, S=1366W/m2Ω*=0.5, S=1600W/m2Ω*=1.0, S=2000W/m2

Solar constant: S*large small

Planetary rotation rate: Ω*large small



The runaway greenhouse state

Komabayashi -Ingersoll limit
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Surface Temp.
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Two key parameters
• Climate state depends on

(1) planetary rotation rate
(2) solar constant

• Planetary rotation rate changes atmospheric 
circulation pattern
– Ω-dependence experiment for a gray atmosphere

• Solar constant determines whether equilibrium 
state can be obtained
– S-dependence experiment

with non-gray atmosphere
including  simple cloud
model

1D grey model (Nakajima et al., 1992)



• Atmospheric circulation model: DCPAM5
– http:www.gfd-dennou.org/library/dcpam/

• For various experiments with a same framework

• Basic equations: 3D primitive equations on sphere
• Discretization: spectrum method (horizontal),

finite difference method (vertical)
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Ω-dependence
experiment
with gray AGCM

Noda et al. (2017), Icarus



What’s problem?

Ω* = 1/365 Ω* = 1

Surface temperature (Merlis and Schneider, 2010)

Slowly rotating regime Rapidly  rotating regime

？

• In previous GCM experiments,
two kinds of equilibrium states are obtained.
– Joshi (2003):                           Ω*=1

– Merlis and Schneider (2010): Ω*=1/365～1

– Edson et al. (2011):                Ω*=1/100～1
(Ω*: planetary rotation rate normalized by the Earth’s value)



Physical processes

• Radiation
– Water vapor : gray to IR radiation
– Dry gas: transparent

• Cumulus convection
– Convective adjustment (Manabe et al., 1965)

• Surface flux: Beljaars and Holtslag (1991)
• Vertical turbulent mixing:  

Mellor and Yamada (1974) level2.5
• Planetary surface：

ocean with zero heat capacity, 
no horizontal heat transport

• No cloud



Experimental setup
Solar flux 
distribution

Synchronously rotating planet configuration

Solar Constant S=1380 [W/m2] (Earth’s value)

Rotation rate Ω*= 0, …… ,1.0 (18 cases)

• Dry air amount at surface: 105Pa,  Surface albedo : 0.0
• Other parameters have same values to Earth’s
• Resolution: T21L16,  Integration Period: 2000 days
• Initial condition : isothermal (280K)  rest state with 

different random seed  (10 member)

NightsideDayside

loingitude



Surface temperature for various Ω*
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W * = 0.5 
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Regimes of atmospheric structures

• Zonal wind at  σ=0.17 level at equator 
(zonal mean, time mean)
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Atmospheric structures for various Ω*

W *= 0.75 W *=1.0
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t = 1400 – 1450 [day] t = 1750 – 1800 [day]

Surface 
pressure

104000

North-south asymmetric state

• Significant asymmetric states appear in 0.2 ≤ Ω∗ ≤ 0.8
• The pattern reverses repeatedly.
• “period” : 10 day-1000day, Non-periodic for large Ω
• Also appear in high resolution experiment 
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Ω* Dependence of energy transport

OLR of night side

Latent energy transport

Sensible energy transport

Energy budget of nightside
1d model

Ω*=0.0
Ω*=0.15
Ω*=0.5
Ω*=1.0

Surface Temperature[K]

OLR [W/m2]

(GCM 120○x120○

region around 
subsolar point)

• Total energy transport is almost independent of Ω*

• Day-side OLR is bounded by radiation limit of 1D model
• Radiation limit: Nakajima et al. (1992),  Ishiwatari et al. (2002)

• (Energy transport) = (Incident flux) – (radiation limit):
independent of Ω*



• Dependence of atmospheric states of 
synchronously rotating aqua-planet on Ω is studied 
by a gray GCM

• There exists a definite regime boundary between 
``slowly rotating regime’’ and ``rapidly rotating 
regime’’
• Existence of multiple equilibrium solutions

• There exist a range  where asymmetric states 
appear

• Summation of sensible/latent heat transport is 
almost independent of rotation rate
• Amount of heat transport is constrained by radiation 

limit

Summary of Ω-dependence experiment



S-dependence
experiment

with nongray AGCM



• GCM experiments for runaway state in recent years
– seem to imply that runaway condition is influenced by multiple processes

• Our old result: Runaway condition is that global mean stellar flux 
exceeds OLR upper limit
– Ishiwatari et al. (2002)

• In this study, runaway condition is re-examined
– We expect that results obtained by previous studies can be described by a 

common condition

What’s problem?

gray atmosphere 
AGCM w/o cloud

Surface Temp.

3D runaway
3D 
equilibrium

1D solutions 
with considering
relative humidity

Upper limit of OLR 
(radiation limit)

Configuration Synchronous Non-synchronous

Runaway threshold S=2200W/m2 S～1500W/m2

Important factor Albedo of dense clouds
(Yang et al., 2013)

Drying in subtropics 
(Leconte et al., 2013)



Physical processes
• Parameterized with methods of terrestrial Meteorology
• Radiation

– δ-Eddington approximation: Toon et al. (1989)
– Absorption and emission by water vapor, CO2,  cloud water:

Chou and Lee (1996), Chou et al (2001)
– Solar radiation is assumed to be same as that of Sun

• Cumulus convection
– Relaxed Arakawa-Schubert: Moorthi and Suarez (1992)

• Surface flux: Beljaars and Holtslag (1991)
• Vertical turbulent mixing:  Mellor and Yamada (1974) level2.5
• Planetary surface：ocean with zero heat capacity, 

no horizontal heat transport
• Simple cloud model

– Integrating time dependent equation including generation, 
advection, turbulent mixing and extinction

𝜕𝑞𝑐
𝜕𝑡

= −𝑣 ∙ 𝛻𝑣 −
 

 𝜎
𝜕𝑞𝑐
𝜕𝜎

+ 𝐹𝑡𝑢𝑟𝑏 + 𝑆𝑐 −
𝑞𝑐
𝜏𝐿𝑇

𝑞𝑐

𝜏𝐿𝑇
: extinction of cloud water

tuned as 𝜏𝐿𝑇 = 1500sec 
under Earth condition(T42L26)

𝑆𝑐 : Source of cloud water
–Condensation in large scale condensation scheme
–Detrain from could top in RAS scheme



Experimental setup
Solar flux 
distribution

Synchronously rotating 
planet configuration

non-Synchronous 
configuration (Earth-like)
with diurnal and seasonal 
changes

Solar Constant S=1366 , 1600, 1800, 2000, 2200 [W/m2]

Rotation rate Ω*= 0, 0.1, 0.5,  1.0

Cloud
extinction time

𝝉𝑳𝑻=0 (no cloud), 1500 [sec]

• Dry air amount at surface: 105Pa, Surface albedo : 0.15
• Resolution: T42L26, Integration Period: 3 years

NightsideDayside

loingitude



Time evolutions of Ts and OLR

Surface Temp.

Time（day）

S1600

S1366

S1800

w/ cloud
Non-synchronousSynchronous

S2200
S1800

w/ cloud

Time（day）

S1800

Most upper line in each figure shows result of runaway case

w/o cloud w/o cloud
(corresponding to 
Ishiwatari et al., 2002)

1000day

1000day

Global mean values for Ω* =1.0

In runway state: temperature keeps increasing

In runway state: OLR is smaller than absorbed stellar flux

OLR



Atmospheric structures for various S

longitude
365 day mean of last third year

S=1366

(𝜏𝐿𝑇 = 1500sec)

S=1600
(u,v) &  Φ

Cloud 
Water

S=2000

w/o cloud

OLR
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Runaway thresholds

Circles: Equilibrium states
●：Synchronous（w /cloud）
●：Non-Synchro（w /cloud）
●：Synchronous（w/o cloud）
●：Non-Synchro（w/o cloud）

Ω*               

Crosses: The runaway greenhouse state
×： Synchronous（w / cloud）
×： Non-Synchro（w / cloud）
×： Synchronous（w/o  cloud）
×： Non-Synchro（w/o cloud）

Ω* dependence of threshold value of S and OLR

Ω*               

OLR before runaway（w/o cloud）

OLR before runaway（w/ cloud）

OLRS

OLR is about 300 W/m2Runaway threshold
deviates



• Synchronous cases: Zonal (meridional mean)

• Non-synchronous cases: Meridional (zonal mean)

Horizontal distributions of OLR

w/o cloud

longituide

w/ cloud

latitude

w/o cloudw/ cloud

latituide

longituide

south north

west east

Ω*=1.0

OLR differences become smaller with increased S.
OLR upper limit exists.
Runaway states occur when absorbed stellar flux
exceeds the upper limit (common condition).
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Day-night energy transport
Night side heat budget (S=1366W/m2 , 365 day mean)

○：night-side OLR
▼：(sensible heat transport)/2𝜋𝑅2

★：(latent heat transport)/2𝜋𝑅2

• Dependence of day-night heat transport on Ω* is small
(similar to gray case: Noda et al., 2017)

• (total energy transport)
= (absorbed stellar flux) – (dayside OLR)
= (absorbed stellar flux) – (OLR upper limit)

w/o cloud (𝜏𝐿𝑇= 0sec)w cloud (𝜏𝐿𝑇 = 1500sec)



• Re-examination on the occurrence condition for the 
runaway greenhouse state
– Synchronous configuration vs. Non-synchronous 

configuration (Earth-like), case w/ cloud vs. case w/o  
cloud

• OLR seems to have upper limit values
– Upper limit of OLR is about 300 W/m2 regardless model 

configuration
– The deviation of the upper limit is only 50 W/m2

• Global mean absorbed stellar flux changes 
according to model configuration
– This causes the difference of Solar constant  threshold
– This result is consistent with the results of previous studie

Summary of S-dependence experiment



• In our experiments for synchronously rotating 
planets,  the upper limit of OLR emerge.
• It constrains day-night energy transport

• It determines solar constant at which the runaway 
greenhouse state emerges

• Remaining problems
– Examination with 1D-model 
– Refinement of cloud model
– Experiments on other configurations: cases with 

thick atmosphere , case with reduced S
– Ocean dynamics! 

Concluding remarks


