Climate of synchronously rotating planet

M. Ishiwatari^(1,2), S. Noda⁽³⁾, K. Nakajima⁽⁴⁾ Y.O. Takahashi^(2,5), S. Takehiro⁽³⁾, Y.-Y. Hayashi^(2,5)

(1) Hokkaido University (2) Center of Planetary Science (CPS)(3) Kyoto University (4) Kyushu University (5) Kobe University

Aquaplanet Workshop Feb. 21, 2017

Outline of this presentation

- Introduction
 - What's synchronously rotating planet?
- Planetary rotation rate dependence of climate
 - Circulation pattern
 - Day-night energy transport
- Solar constant dependence
 - Occurrence condition of the runaway greenhouse state
- Concluding remarks

Introduction

Exoplanets

The number of discovered exoplanets is increasing

 Exoplanets have characteristics different from those of solar system planets

Synchronously rotating planet

- Many low-mass exoplanets are tidally locked. — They have fixed dayside and nightside
- Some of them may be terrestrial planet
 - They are new objects for climate research

Climate of synchronously rotating planets?

Examples of atmospheric state

Time mean field (365 day) with changing viewpoint

 $\Omega^*=1.0$, S=2000W/m²

Ω*=0.5, S=1600W/m²

 $\Omega^*=0.1$, S=1366W/m²

Yellow dot: subsolar point Colors: surface temperature Vectors: surface wind Contours: precipitation

Two key parameters

- Climate state depends on

 (1) planetary rotation rate
 (2) solar constant
- Planetary rotation rate changes atmospheric circulation pattern
 - $-\Omega$ -dependence experiment for a gray atmosphere
- Solar constant determines whether equilibrium state can be obtained
 The runaway greenhouse state
 - S-dependence experiment with non-gray atmosphere including simple cloud
 Model

Model

- Atmospheric circulation model: DCPAM5 – http:www.gfd-dennou.org/library/dcpam/
- For various experiments with a same framework

- Basic equations: 3D primitive equations on sphere
- Discretization: spectrum method (horizontal), finite difference method (vertical)

Ω-dependence experiment with gray AGCM

Noda et al. (2017), Icarus

What's problem?

- In previous GCM experiments, two kinds of equilibrium states are obtained.
 - Joshi (2003): Ω*=1
 - Merlis and Schneider (2010): $\Omega^*=1/365 \sim 1$
 - Edson et al. (2011): $\Omega^*=1/100 \sim 1$ (Ω^* : planetary rotation rate normalized by the Earth's value)

Physical processes

Radiation

- Water vapor : gray to IR radiation
- Dry gas: transparent

Cumulus convection

- Convective adjustment (Manabe et al., 1965)
- Surface flux: Beljaars and Holtslag (1991)
- Vertical turbulent mixing: Mellor and Yamada (1974) level2.5
- Planetary surface : ocean with zero heat capacity, no horizontal heat transport
- No cloud

Experimental setup

- Dry air amount at surface: 10⁵Pa, Surface albedo : 0.0
- Other parameters have same values to Earth's
- Resolution: T21L16, Integration Period: 2000 days
- Initial condition : isothermal (280K) rest state with different random seed (10 member)

Surface temperature for various Ω^*

Ω* = 0

atitude

ree_forth)³⁰ 60 90 120 150 180 210 240 270 300 330 (degree_east

longitude

 Ω * = 0.67

 Ω^{*} = 0.05

$\Omega^{\,*}$ = 0.15

Regimes of atmospheric structures

zonal mean

Zonal wind at σ=0.17 level at equator (zonal mean, time mean)

Atmospheric structures for various Ω^*

98000 105000

North-south asymmetric state

- Significant asymmetric states appear in $0.2 \le \Omega^* \le 0.8$
- The pattern reverses repeatedly.
- "period" : 10 day-1000day, Non-periodic for large Ω
- Also appear in high resolution experiment

Ω^* Dependence of energy transport

- Total energy transport is almost independent of Ω^*
- Day-side OLR is bounded by radiation limit of 1D model
 - Radiation limit: Nakajima et al. (1992), Ishiwatari et al. (2002)
- (Energy transport) = (Incident flux) (radiation limit): independent of Ω^{*}

Summary of Ω -dependence experiment

- Dependence of atmospheric states of synchronously rotating aqua-planet on Ω is studied by a gray GCM
- There exists a definite regime boundary between ``slowly rotating regime" and ``rapidly rotating regime"
 - Existence of multiple equilibrium solutions
- There exist a range where asymmetric states appear
- Summation of sensible/latent heat transport is almost independent of rotation rate
 - Amount of heat transport is constrained by radiation limit

S-dependence experiment with nongray AGCM

What's problem?

- GCM experiments for runaway state in recent years
 - seem to imply that runaway condition is influenced by multiple processes

Configuration	Synchronous	Non-synchronous
Runaway threshold	S=2200W/m ²	S~1500W/m ²
Important factor	Albedo of dense clouds (Yang et al., 2013)	Drying in subtropics (Leconte et al., 2013)

 Our old result: Runaway condition is that global mean stellar flux exceeds OLR upper limit

Ishiwatari et al. (2002)

gray atmosphere AGCM w/o cloud

- In this study, runaway condition is re-examined
 - We expect that results obtained by previous studies can be described by a common condition

Physical processes

- Parameterized with methods of terrestrial Meteorology
- Radiation
 - δ-Eddington approximation: Toon et al. (1989)
 - Absorption and emission by water vapor, CO₂, cloud water: Chou and Lee (1996), Chou et al (2001)
 - Solar radiation is assumed to be same as that of Sun
- Cumulus convection
 - Relaxed Arakawa-Schubert: Moorthi and Suarez (1992)
- Surface flux: Beljaars and Holtslag (1991)
- Vertical turbulent mixing: Mellor and Yamada (1974) level2.5
- Planetary surface : ocean with zero heat capacity, no horizontal heat transport
- Simple cloud model
 - Integrating time dependent equation including generation, advection, turbulent mixing and extinction

$$\frac{\partial q_c}{\partial t} = -v \cdot \nabla v - \dot{\sigma} \frac{\partial q_c}{\partial \sigma} + F_{turb} + S_c - \frac{q_c}{\tau_{LT}}$$

 S_c : Source of cloud water -Condensation in large scale condensation scheme -Detrain from could top in RAS scheme $rac{q_c}{ au_{LT}}$: extinction of cloud water tuned as $au_{LT} = 1500 \mathrm{sec}$ under Earth condition(T42L26)

Experimental setup

Solar flux distribution	<figure><figure></figure></figure>	non-Synchronous configuration (Earth-like) with diurnal and seasonal changes
Solar Constant	S=1366, 1600, 1800, 200	0, 2200 [W/m²]
Rotation rate	Ω*=0, 0.1, 0.5, 1.0	
Cloud extinction time	$ au_{LT}$ =0 (no cloud), 1500 [s	ec]

- Dry air amount at surface: 10⁵Pa, Surface albedo : 0.15
- Resolution: T42L26, Integration Period: 3 years

Most upper line in each figure shows result of runaway case

Atmospheric structures for various S

365 day mean of last third year

Runaway thresholds

Ω^* dependence of threshold value of S and OLR

Circles: Equilibrium states

: Synchronous (w /cloud)

: Non-Synchro (w /cloud)

: Synchronous (w/o cloud)

Non-Synchro (w/o cloud)

Crosses: The runaway greenhouse state

- × : Synchronous (w / cloud)
- × : Non-Synchro(w / cloud)
- × : Synchronous(w/o cloud)
- × : Non-Synchro(w/o cloud)

Horizontal distributions of OLR

 $\Omega^{*}=1.0$

• Synchronous cases: Zonal (meridional mean)

Day-night energy transport

Night side heat budget (S=1366W/m², 365 day mean)

- Dependence of day-night heat transport on Ω* is small (similar to gray case: Noda et al., 2017)
- (total energy transport)
 - = (absorbed stellar flux) (dayside OLR)
 - = (absorbed stellar flux) (OLR upper limit)

Summary of S-dependence experiment

- Re-examination on the occurrence condition for the runaway greenhouse state
 - Synchronous configuration vs. Non-synchronous configuration (Earth-like), case w/ cloud vs. case w/o cloud
- OLR seems to have upper limit values
 - Upper limit of OLR is about 300 W/m² regardless model configuration
 - The deviation of the upper limit is only 50 W/m^2
- Global mean absorbed stellar flux changes according to model configuration
 - This causes the difference of Solar constant threshold
 - This result is consistent with the results of previous studie

Concluding remarks

- In our experiments for synchronously rotating planets, the upper limit of OLR emerge.
 - It constrains day-night energy transport
 - It determines solar constant at which the runaway greenhouse state emerges
- Remaining problems
 - Examination with 1D-model
 - Refinement of cloud model
 - Experiments on other configurations: cases with thick atmosphere , case with reduced S
 - Ocean dynamics!