# Mean zonal flows <br> induced by Boussinesq thermal convection in rotating spherical shells as an application to the gas giant planets 

Shin-ichi Takehiro*1<br>Youhei Sasaki ${ }^{1}$, K. Ishioka ${ }^{1}$, Ken-suke Nakajima ${ }^{2}$, Yoshi-Yuki Hayashi ${ }^{3}$<br>${ }^{1}$ Kyoto Univ. , ${ }^{2}$ Kyushu Univ., ${ }^{3}$ Kobe Univ.<br>February, 21, 2017 @ NAOJ, Mitaka

## Outline

## Background

Formulation

Our calculations

Summary

## Outline

Background

Formulation

Our calculations

Summary

## Surface flows of gas giant planets

- Surface flows of Jupiter and Saturn are characterized by the broad prograde jets around the equator and the narrow alternating jets in mid- and high-latitudes.
- It is not yet clear whether those surface jets are produced by convective motions in the "deep" region, or are the result of fluid motions in the "shallow" weather layer.




## "Deep" models and "Shallow" models

- "Shallow" models
- 2D turbulence on a rotating sphere
- Primitive model
- Result: Narrow alternating jets in mid- and high-latitudes.
- Problem: the equatorial jets are not necessarily prograde

lon-velocity

- Recent improvements
- Strong Newtonian cooling (shallow water)
- MHD drag (primitive model)
- "Deep" models
- Convection in rotating spherical shells
- Result: Produce equatorial prograde flows easily
- Problem: difficult to generate alternating jets in mid- and high-latitudes


CONTOUR INTERVAL - S.COOE +01


- Recent improvements : thin spherical shell


## Outline

## Background

Formulation

## Our calculations

## Model setup

- Boussinesq fluid in a rotating spherical shell.
- scaling: the shell thickness, viscous diffusion time, temperature difference.

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{u}=0, \\
& \mathrm{E}\left\{\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\nabla^{2} \boldsymbol{u}\right\}+2 \boldsymbol{k} \times \boldsymbol{u}+\nabla p=\frac{\operatorname{RaE}^{2}}{\operatorname{Pr}} \frac{\boldsymbol{r}}{r_{o}} T, \\
& \frac{\partial T}{\partial t}+(\boldsymbol{u} \cdot \nabla) T=\frac{1}{\operatorname{Pr}} \nabla^{2} T .
\end{aligned}
$$

- Parameters:
- Plandtl number: $\operatorname{Pr}=\frac{v}{\kappa}$
- Rayleigh number: $\operatorname{Ra}=\frac{\alpha g_{o} \Delta T D^{3}}{\kappa v}$
- Ekman number: $\mathrm{E}=\frac{v}{\Omega D^{2}}$
- radius ratio: $\eta=\frac{r_{i}}{r_{o}}$



## "Thin" spherical shell model

- Heimpel and Aurnou(2007) (hereafter, HA2007)
- "Thin" spherical shell model with large Rayleigh number, small Ekman number.
- Prograde jets and alternating jets in mid- and high-latitudes can produce simultaneously
- However, eight-fold symmetry in the longitudinal direction is

 assumed.


## Outline

## Background

## Formulation

Our calculations

## Summary

## Purpose

- HA2007 explains that the banded structure in high latitudes is caused by forced 2D turbulence on the $\beta$ plane (Rhiens effect)
- Forced 2D barotropic turbulence on a rotating sphere : banded structure disappears after long time integration (Obuse et al. 2010).
- Question : does the banded structure of HA2007 disappear after long time integration or not?


## In the present study:

- Let us perform long time integration of thermal convection in a rotating thin spherical shell.
- Calculate in the whole domain.


## Forced 2D barotropic turbulence on a rotating sphere

- Obuse et al. (2010)
- Merger and disappearance of jets $\Rightarrow$ banded structure disappears
zonal-mean zonal angular momentum



Time development of latitudinal distribution of angular momentum (left) and final zonal wind profile (right) (Obuse et al. 2010)

## Forced 2D barotropic turbulence on a rotating sphere

- Obuse et al.(2010)



## Model setup

- Boussinesq fluid in a rotating spherical shell.
- Scaling: the shell thickness, rotation period, temperature difference.

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{u}=0, \\
& \frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\mathrm{E}^{2} \boldsymbol{u}+2 \boldsymbol{k} \times \boldsymbol{u}+\nabla p=\frac{\mathrm{RaE}^{2}}{\operatorname{Pr}} \frac{\boldsymbol{r}}{r_{o}} T, \\
& \frac{\partial T}{\partial t}+(\boldsymbol{u} \cdot \nabla) T=\frac{\mathrm{E}}{\operatorname{Pr}} \nabla^{2} T .
\end{aligned}
$$

- Parameters:
- Prandtl number: $\operatorname{Pr}=\frac{v}{\kappa}$
- Rayleigh number: $\mathrm{Ra}=\frac{\alpha g_{o} \Delta T D^{3}}{\kappa v}$
- Ekman number: $\mathrm{E}=\frac{v}{\Omega D^{2}}$
- radius ratio: $\eta=\frac{r_{i}}{r_{o}}$



## Experimental setup

- Boundary condition: Isothermal, Impermeable and Stress free.
- Input parameters:

| Prandtl number: Pr | 0.1 |
| :---: | :---: |
| Radius ratio: $\eta$ | 0.85 |
| Ekman number: E | $3 \times 10^{-6}$ |
| Modified Rayleigh number: $\mathrm{Ra}^{*}$ | 0.05 |

- the definition of modified Rayleigh number: $\mathrm{Ra}^{*}=\frac{\mathrm{RaE}^{2}}{\operatorname{Pr}}=\frac{\alpha g \Delta T}{\Omega^{2} D}$
- Ratio of Coriolis term and buoyancy term


## Numerical methods

- Traditional spectral method.
- Toroidal and Poloidal potentials of velocity are introduced.
- The total wave number of spherical harmonics is truncated at 341 , and the Chebychev polynomials are calculated up to the 48th degree.
- The numbers of grid points:1024, 512, and 65 in the longitudinal, latitudinal, and radial directions, respectively.
- In order to save computational resources, we use hyperdiffusion with the same functional form as the previous studies

$$
v= \begin{cases}v_{0}, & \text { for } l \leq l_{0} \\ v\left[1+\varepsilon\left(l-l_{0}\right)^{2}\right], & \text { for } l>l_{0}\end{cases}
$$

- we choose $l_{0}=21,42,85,170, \varepsilon=10^{-2}$
( $l_{0}$ is gradually increased)
- The time integration is performed using the Crank-Nicolson scheme for the diffusion terms and the second-order Adams-Bashforth scheme for the other terms.


## Convective activity

- Radial velocity at $t=64030$ (about 10000 rotation).



## Vorticity

- Axial vorticity at $t=64030$ (zonal mean component removed)



## Mean zonal flows

- Mean zonal flow at $t=47630$ (about 7500 rotation).
- Banded structure appears in mid- and high-latitudes.



## Development of zonal flows

- Further time integration.
- Number of jets decreases




## Outline

## Background

Formulation

## Our calculations

Summary

## Summary and discussion

- Disappearance of alternating jets in high latitudes
- Prograde acceleration in high latitudes
- Retrograde acceleration around the tangential cylinder
- What is acceleration mechanism? One possible story is...
- Thermal convection occurs in high latitudes
- It excites 2-dim. axial vortices
- The vortices propagate as Rossby waves outward and are absorbed near the tangent cylinder
- Associated with the propagation of Rossby waves, negative angular momentum is transferred outward
- Deep models may by difficult to explain the banded structure of Jupiter and Saturn?


## Acknowledgement

The numerical computation of thermal convection in a rotating thin spherical shell was carried out on the Earth Simulator (ES2) at the Japan Agency for Marine Earth Science and Technology.

## References

[1] Busse, F. H., 1970a : Differential rotation in stellar convection zones. Astrophys. J., 159, 629-639
[2] Busse, F. H., 1970b : Thermal instabilities in rapidly rotating systems. J. Fluid Mech., 44, 441-460
[3] Busse, F. H., 1973 : Differential rotation in stellar convection zones. II. Astron. Astrophys., 28, 27-37
[4] Busse, F. H., 1983 : A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn., 23, 153-174
[5] Busse, F. H., 2002 : Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids, 14, 1301-1314
[6] Christensen, U. R., 2002 : Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech., 470, 115-133.
[7] Heimpel, M., Aurnou, J., 2007 : Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn Icarus, 187, 540-557
[8] Sun, Z.-P., Schubert, G., 1995 : Numerical simulations of thermal convection in a rotating spherical shell at high Taylor and Rayleigh numbers., Phys. Fluids, 7, 2686-2699.
[9] Takehiro, S., Hayashi, Y.-Y., 1999 : Mean zonal flows excited by critical thermal convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn., 90, 43-77
[10] Takehiro, S., Irie, M., 2001 : Two-dimensional spiraling convection in a rapidly rotating cylindrical annulus and the dynamics of Rossby waves. NAGARE Multimedia, http://www2.nagare.or.jp/mm/2001/takehiro/index.htm
[11] Takehiro, S. 2008 : Physical interpretation of spiralling-columnar convection in a rapidly rotating annulus with radial propagation properties of Rossby waves. J. Fluid Mech., 614, 67-86.
[12] Takehiro, S., 2010 : On the retrograde propagation of critical thermal convection in a slowly rotating spherical shell. J. Fluid Mech., 659, 505-515
[13] Zhang, K., 1992 : Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech., 236, 535-556

