Simulation of Venus atmosphere Results of a simple Venus GCM

Hiroki Kashimura (Kobe Univ./CPS) collaborated with N. Sugimoto, M. Takagi, H. Ando, Y. Matsuda, W. Ohfuchi, T. Enomoto, K. Nakajima, Y. O. Takahashi, and Y.-Y. Hayashi

Acknowledgment: This study is conducted under the joint research project of the Earth Simulator Center with title "Simulations of Atmospheric General Circulations of Earth-like Planets by AFES."

Venus Atmosphere

- Many notable phenomena have been observed in Venus Atmosphere. For example,
 - Superrotation: one of the biggest mystery of planetary atmospheres.
 - The atmosphere is rotating 60 times faster than the solid planet.
 - Y-shaped structure of a planetary-scale cloud pattern observed by ultra-violet.
 - S-shaped polar vortex and cold collar observed by infra-red.
 - Planetary-scale streak structure, recently revealed by night-side image of IR2 camera onboard Venus Climate Orbiter/Akatsuki.

Simulations of Venus Atmosphere

- Many studies have tried to simulate the generation of the superrotation from a motionless initial state.
 - Young and Pollack (1970), Del Genie and Zhou (1996)
 - Yamamoto & Takahashi (2003), Hollingsworth et al. (2007), Lee et al. (2007)
 - obtained a superrotation state but with unrealistic strong heating.
 - Lebonnois et al. (2010, 2015, 2016)
 - obtained a superrotation with sophisticated radiative code, but the zonal wind under the cloud layer was very slow.

Lebonnois et al. (2010)

Simulations of Venus Atmosphere

- And, many Venus GCM studies used low-resolution models.
 - A comparative study of Venus GCMs were conducted with low-resolution (~ T21) by Lebonnois et al. (2013)
 - The inter-model difference would be due to the difference in horizontal eddy diffusion.

- Simulations should be performed in higher-resolution.
 - Much more computational costs are required.

Our strategy

- We have attempted to simulate a superrotational state of Venus atmosphere with:
 - high-resolution up to T319 and L240.
 - an idealized superrotational initial state.
 - realistic strength of solar heating and static stability.
 - though the radiation process is a simple Newtonian cooling.
- To perform high-resolution simulation as above, we developed a simplified Venus GCM based on AFES.
 - AFES
 - stands for the Atmospheric GCM For the Earth Simulator.
 - ▶ was developed by Ohfuchi et al. (2004) and Enomoto et al. (2008).
 - achieves a very high computational efficiency in a vector-type super computer such as the Earth Simulator.

Our simplified Venus GCM

Resolutions:

- T42 (~ $2.8^{\circ} \times 2.8^{\circ}$; 128×64 grids) L60 (Δz ~2km)
- T63 (~1.9°× 1.9°; 192×96 grids) L120 (Δz~1km)
- T159 (~ $0.75^{\circ} \times 0.75^{\circ}$; 480×240 grids) L120 (Δz ~1km)
- T319 (~0.375°× 0.375°; 960×480 grids) L240 (Δz~0.5km)
- Simplified Radiative forcing
 - Newtonian cooling and solar heating w/ or w/o a diurnal variation.
- No topography
- No moist processes
- No convective adjustments
- Sponge layers located above 80km
- Biharmonic horizontal diffusion (∇^4) with a damping time of 0.01 Earth days for the highest wave number.
- Vertical eddy diffusion with coefficient of 0.15 m²s⁻¹

Note that planetary-rotation direction is same as the Earth

Stability in the "basic state" for Newtonian cooling (Sugimoto et al. 2013)

Initial state: superrotation

Height [km]

Targets

 Our members have done many works each focusing on specific features such as:

 Baroclinic instability 	(Sugimoto et al. 2014, JGR)
- Neutral waves	(Sugimoto et al. 2014, GRL)
- Thermal tides	(Takagi et al. in preparation)
- Planetary-scale streak structure	(Kashimura et al. in preparation)
 Cold collar/warm polar region 	(Ando et al. 2016, Nature Com.)
 Energy spectra 	(Kashimura et al. in preparation)
 Polar dipole (S-shape) 	(Ando et al. under revision)

• In this talk, I focus on these 3 topics.

Results | zonal mean zonal wind

Time series of mean zonal wind above the equator

Time mean for last 1 Earth year

latitude

Results | zonal mean zonal wind

Planetary-scale streak structures

Planetary-scale streak structures

Observed in IR2 night-side

- IR radiated from near-surface atmosphere. Thick clouds blocks it.
 - White = thin clouds = downward flow?
 - Black = thick clouds = upward flow?

Produced in our Venus GCM

- Snapshot of vertical p-velocity.
 - White = downward flow
 - Black = upward flow

p-velocity | movie (1h interval)

OMG (sig = 1E–3) ~64 km

rotation direction \rightarrow

CONTOUR INTERVAL = 1.200E-05

z=0.00105418 hPa 0005-01-01 01:00:00+0000

←IR2-nightside image (rotated 180 deg to match)

../QSOL_z1E-3.nc@QSOL

p-velocity | movie (1h interval)

z=0.00105418 hPa 0005-01-01 01:00:00+0000

Venus AFES | vertical p-velocity

Seen from above the poles

- The streak is a part of a huge spiral extending from the pole to about lat = 30 deg in each hemisphere.
- The spirals in both hemispheres are synchronized.

p-velocity/sigma

meridional cross section snapshot

- Strong-downward-flow regions are located about ¹⁰ sig=10⁻²-10⁻⁴ ~ 50-70km.
- Inclined toward lower equatorial region.

sigma = p/p_s

- Equatorial-side edge of the spiral corresponds to convergence of meridional flow.
- I suspect strong convergence induced by the meridional flow makes strong downward flow and also gravity waves are excited.

Experiments

To explore the importance of the introduced low stability layer (55–60 km, 0.1 K/km), we conducted experiments in which the stability is changed to

Mechanism?

 Such wave-like structure is inclined by strong latitudinal shear in angular velocity and may result in as below.

Summary for streak structures

- Planetary-scale streak structures similar to those observed in a night side IR2 image are reproduced in <u>vertical velocity</u> in our simple Venus GCM, which has dynamics only but has a "low stability layer" (55–60km).
 - Planetary-scale streaks are:
 - strong downward flow, possibly corresponds to thin cloud region.
 - a part of huge spirals extending from the pole to about lat = 30 deg.
 - synchronized in each hemisphere.
 - Strong downward flow seems to be caused by convergence of meridional wind.
 - Num. experiments with changing the static stability of the "low stability layer" are performed.
 - Experimental results suggest that a large gap in mean angular velocity between mid- and high-latitudes inclines the meridional velocity field (~ structure of some waves?) and produces strong convergence streak.
 - However, relation between the "low stability layer" and mean zonal wind field is not explored yet.

