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Venus Atmosphere

 Many notable phenomena have been observed in Venus Atmosphere.
For example,

- Superrotation: one of the biggest mystery of planetary atmospheres.
» The atmosphere is rotating 60 times faster than the solid planet.

- Y-shaped structure of a planetary-scale cloud pattern observed by
ultra-violet.

- S-shaped polar vortex and cold collar observed by infra-red.

- Planetary-scale streak structure, recently revealed by night-side
image of IR2 camera onboard Venus Climate Orbiter/Akatsuki.
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Simulations of Venus Atmosphere

* Many studies have tried to simulate the generation of the
superrotation from a motionless initial state.

- Young and Pollack (1970), Del Genie and Zhou (1996)
- Yamamoto & Takahashi (2003), Hollingsworth et al. (2007), Lee et al. (2007)

> obtained a superrotation state but with unrealistic strong heating.
- Lebonnois et al. (2010, 2015, 2016)
> obtained a superrotation with sophisticated radiative code, but the
zonal wind under the cloud layer was very slow.

/ Lebonnois et al.
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Simulations of Venus Atmosphere

 And, many Venus GCM studies used low-resolution models.
- A comparative study of Venus GCMs were conducted with
low-resolution (~ T21) by Lebonnois et al. (2013)
> The inter-model difference would be due to -
the difference in horizontal eddy diffusion. -

* Simulations should be performed in
higher-resolution.
- Much more computational costs are required. .*




Our strategy

* \We have attempted to simulate a superrotational state of Venus
atmosphere with:
- high-resolution up to 1319 and L240.
- an idealized superrotational initial state.
- realistic strength of solar heating and static stability.
> though the radiation process is a simple Newtonian cooling.

e To perform high-resolution simulation as above, we developed a
simplified Venus GCM based on AFES.
- AFES
> stands for the Atmospheric GCM For the Earth Simulator.
> was developed by Ohfuchi et al. (2004) and Enomoto et al. (2008).
> achieves a very high computational efficiency in a vector—type > super
computer such as the Earth Simulator. e e




Our simplified Venus GCM

* Resolutions:

- T42 (~2.8°x 2.8°; 128x64 grids) - L60  (Az~2km)
- T63 (~1.9°x 1.9°; 192x96 grids) - L120 (Az~1km)
- T159 (~0.75°x 0.75° 480x240 grids) - L120 (Az~1km)

- T319 (~0.375°x 0.375°; 960x480 grids) - L240 (Az~0.5km)

* Simplified Radiative forcing
- Newtonian cooling and solar heating w/ or w/o a diurnal variation.

* No topography
 No moist processes
 No convective adjustments

* Sponge layers located above 80km

e Biharmonic horizontal diffusion (V4 with a damping time of 0.01 Earth
days for the highest wave number.

 \ertical eddy diffusion with coefficient of 0.15 m?s’

* Note that planetary-rotation direction is same as the Earth

Crisp (1986) for N. Coef.; Tomasko et al. (1980) for Solar heating



Stability in the “basic state” for

Newtonian cooling " _ _
(Sugimoto et al. 2013) Initial state: superrotation
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Targets

 Our members have done many works each focusing on specific features
such as:

- Baroclinic instability (Sugimoto et al. 2014, JGR)
- Neutral waves (Sugimoto et al. 2014, GRL)
- Thermal tides (Takagi et al. in preparation)

(- Planetary-scale streak structure (Kashimura et al. in preparation)\
- Cold collar/warm polar region (Ando et al. 2016, Nature Com.)

. Energy spectra (Kashimura et al. in preparation) y
- Polar dipole (S-shape) (Ando et al. under revision)

* In this talk, | focus on these 3 topics.




Results | zonal mean zonal wind
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Results | zonal mean zonal wind

4 )
Observation: cloud tracked wind Time mean for

last 1 Earth year
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Planetary-scale streak structures




Planetary-scale streak structures

Observed in IR2 night-side Produced in our Venus GCM

* |R radiated from h.é'éF:'éurface atmosphere.

Thick clouds blocks it. » White = downward flow
> White = thin clouds = downward flow? > Black = upward flow

> Black = thick clouds = upward flow?
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p-velocity | movie (1h interval)

OMG (sig = 1E-3) ~64 km
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p-velocity | movie (1h interval)

Seen from above the poles OMG (sig = 1E-3) ~64 km
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Venus AFES | vertical p-velocity

Seen from above the poles

-0.16 -0.08 0 0.08 0.16 [1]

* The streak is a part of a huge spiral extending from the pole to about lat = 30 deg
In each hemisphere.

* The spirals in both hemispheres are synchronized.
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* Equatorial-side edge of the spiral corresponds to convergence of meridional flow.

* | suspect strong convergence induced by the meridional flow makes strong
downward flow and also gravity waves are excited.
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Experiments

* To explore the importance of the introduced low stability layer (55-60 km,
0.1 K/km), we conducted experiments in which

the stability is changed to .
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0.5 K/km 2.0 K/km 4.0 K/km
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Mechanism?
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Summary for streak structures

* Planetary-scale streak structures similar to those observed in a night
side IR2 image are reproduced in vertical velocity in our simple Venus
GCM, which has dynamics only but has a “low stability layer” (55-60km).

- Planetary-scale streaks are:
> strong downward flow, possibly corresponds to thin cloud region.
> a part of huge spirals extending from the pole to about lat = 30 deg.
> synchronized in each hemisphere.

- Strong downward flow seems to be caused by convergence of
meridional wind.

- Num. experiments with changing the static stability of the “low stability
layer” are performed.

> Experimental results suggest that a large gap in mean angular
velocity between mid- and high-latitudes inclines the meridional
velocity field (~ structure of some waves?) and produces strong
convergence streak.

~ However, relation between the “low stability layer” and mean zonal
wind field is not explored yet.



