Climate of Terraformed Mars A Simulation Study using DCPAM

Yoshitsugu Shimizu, George L. Hashimoto

2017/02/21

Mars

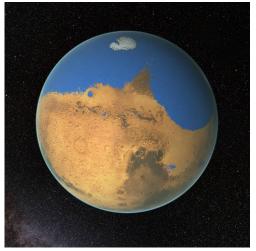


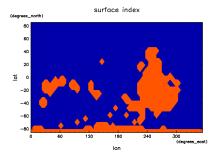
Image Credit: http://photojournal.jpl.nasa.gov/jpeg/PIA02406.jpg

The martian surface is presently cold and dry. • $T_s = 210$ K, $P_s = 6$ hPa

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Terraformed Mars

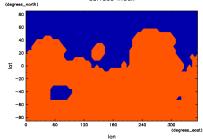
Terraformed mars is warm and partially covered with ocean.


 We do not discuss how to terraform the Mars.

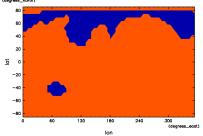
 $Image\ Credit:\ https://www.nasa.gov/press/2015/march/nasa-research-suggests-mars-once-had-more-water-than-earth-s-arctic-ocean$

Terraformed Mars

Radius	3396 (km)	Mars
Gravity	$3.72 \ (m/s^2)$	Mars
Rotational period	24.66 (hour)	Mars
Obliquity	25.19 (deg)	Mars
Eccentricity	0.0935	Mars
Orbital period	669 (Mars day)	Mars
Solar constant	$1370 \ (\text{W}/\text{m}^2)$	Earth
Atmospheric composition	N_2 , O_2 , +minor	Earth
Surface pressure	1 (atm)	Earth
Coverage of ocean	85, 51, 35, 14 (%)	

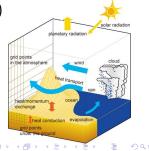

Coverage of Ocean

(degrees_north) 80 60 40 20 đ ٥ -20 -40 -60 -80 240 60 120 180 300 ٥ (degrees_east) lon


surface index

(degrees_north)

surface index

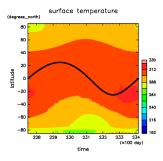

Model and Experimental Setting

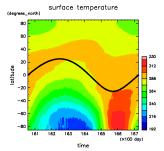
DCPAM5 ver20161021 (Dennou-Club Planetary Atmospheric Model Project)

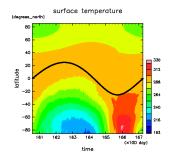
- Dynamics : Primitive equations
- Radiation : Chou et al. (1999)
- Large scale condensation : Manabe (1965)
- Cumulus convection : Relaxed Arakawa-Schubert
- Turbulent mixing : Mellor and Yamada (1982)
- Land surface process : Manabe (1969)

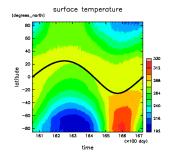
Experimental Setting

- Ocean : Slab ocean (60 m)
 - Thermodynamic sea ice model
- Resolution : T21L26
- Integration time : 25 Martian years
 - The last 3 years are analyzed.

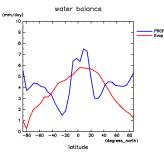


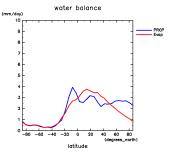

Global Mean

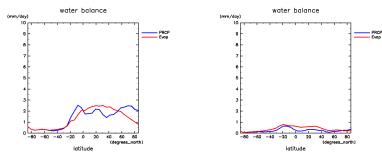

Coverage of ocean	85%	51%	35%	14%
Surface temperature (K)	304	285	281	267
SW heating at TOA (W/m^2)	242	225	222	209
Effective Temperature (κ)	256	251	250	246
Greenhouse effect (K)	48	34	31	21
Precipitable water (mm)	153	40	29	5

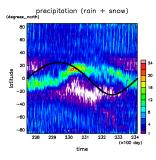

Ocean albedo < Land albedo

Surface Temperature

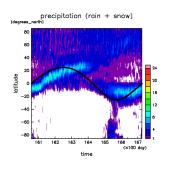


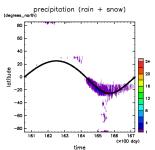


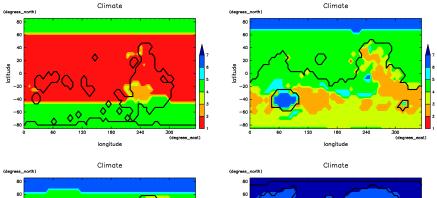


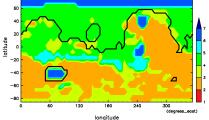

Precipitation and Evaporation

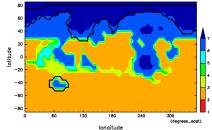




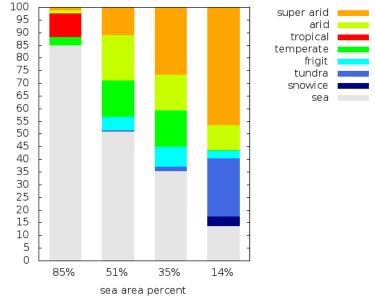

Precipitation


precipitation (rain + snow) (degrees_north)





Climate Classification



Habitability

percent

ヘロン 人間 と 人間 と 人間 と

æ

Summary

We simulated a climate of terraformed Mars with four different sea levels.

- Global mean surface temperature increases, as the sea level rises.
 - Albedo of sea surface is smaller than that of land surface.
- Global mean precipitation increases, as the sea level rises.
- Large area of southern hemisphere become arid, when the area of ocean is less than 50%.
 - Since the martian two hemispheres' geography differ in elevation, the southern hemisphere become a large continent.