Studying Earth (and other planets) as an aqua-planet

Lecture I

David Ferreira University of Reading

Outline

- Why using Aquaplanet set-ups?
- Modelling framework: MITgcm

Focus here mainly on ocean

- Some basics: SST distribution, MOC, etc.
- Topic 1: The structure of the OHT transport
- Topic 2: Localization of deep water formation
- Topic 3: Multiple equilibrium state of climate
- (Topic 4: Exoplanet applications)

How much can we explain wit dynamics and simple geometries?

Sea-Ice height (m) 17 15 13 11 9 7 5 3 1

Drak

2 MIT GCM: Coupled Ocean-Atmosphere-Sea ice:

- Primitive equation models,
- Cube-sphere grid: ~3.75°,
- Synoptic scale eddies in the atmosphere,
- Gent and McWilliams eddy parameterization in the ocean,
- Simplified atmospheric physics (SPEEDY, Molteni 2003),
- Conservation to numerical precision (Campin et al. 2008)

Temperature snap-shot at 500 mb.

Aquaplanet circulation

500 mb Temperature

Air-sea Heat Flux (+=up)

Surface Specific Humidity

Day 1

SST and sea-ice distributions

Does it make sense to use idealized configurations?

Ocean Heat Transport

No meridional barrier = Small OHT at high-latitudes

Drake & Double-Drake: OHT shifted northward

Exhibit Earth-like characteristics at large scale

Idealized coupled simulations

Overturning circulation

- Dominated by wind-driven equatorial cells
- Ekman dynamics
- Meridional boundaries allows "horizontal" gyres
- Deep convection at high latitudes
- Opening of "Drake Passage": inter-hemispheric overturning
- Links Southern Ocean to the Northern hemisphere deep convection
- Two basins \rightarrow little impact on global scale
- Localization of deep convection in one basin

Ekman currents

Looking down on ocean surface

Observed Ekman pumping

Ekman Pumping (m/y)

• relates to the net meridional heat transport

 $OHT \approx \Gamma_O C_P DT \times Y$

• a very useful tool to explore the dynamics of the OHT (e.g. Czaja and Marshall 2006, Ferrari and Ferreira 2011) and other topics (Doos and Webb ; Doos and Nilson, 2011; Held and Schneider, 1999 etc)

 $OHT \approx \Gamma_{O}C_{P} \Upsilon(q) \times Dq$

Dynamics of the OHT

- Most of the OHT is achieved in shallow wind-driven overturning cells,
- Cross-Equatorial OHT associated with the deep Atlantic MOC and deep water formation
- OHT of the AABW cell is negligible,
- Diapycnal mixing has little effect of OHT

(b)

North Equator pole

 Requires a western boundary current and a continent

$$w_{Ek} = 30 \text{ m/y} = 10^{-6} \text{ m/s}$$

 $\longrightarrow \text{ v} = 0.25 \text{ cm/s}$

The wind-driven circulation

- Inter-hemispheric deep MOC = global shift of the OHT more "northward"
- But most of the OHT is due to shallow wind-driven overturning
 → peak at ~20N/S
- In real world too (Ferrari and Ferreira, 2011)
- The AMOC explains "only" 40-60% of Atlantic OHT

Why is the ITCZ in the Northern Hemisphere?

Donohoe et al. 2013

Why is the ITCZ in the Northern Hemisphere?

Marshall et al. 2013, Donohoe et al. 2013

Conclusion: Double-Drake = Real World + O(1)

Two ingredients:

- 1) a meridional asymmetry: an ACC in the SH
- 2) a zonal asymmetry: a small and a large basin

Atlantic/Pacific asymmetry

Present-day Meridional Overturning Circulation

<u>Atlantic:</u> warmer, saltier, dense water formation, well ventilated

Pacific: colder, fresher, winddriven shallow circulation

OCCA Ocean state estimate (Forget, 2009)

Observations

Atlantic: northward everywhere Pacific : anti-symmetric

Trenberth and Carron (2001)

Freshwater transport 1.5 0.5 $\Delta F_{Alt} > 0$ $DF_{IP} \approx 0$

40

60

80

-1

-1.5└ -40

-20

0

20

latitude

$$(E - P)_{Atl} > (E - P)_{IP}$$

→ Export of freshwater from Atlantic to Pacific

Wijffels et al. (92)

MOC in Atlantic $\leftarrow \rightarrow$ high salinity in Atlantic

Talley (2008)

Why does deep water formation occur in the North Atlantic only?

- <u>Salinity is key:</u> produce densest waters
 (e.g. Seidov and Haupt 2003, Talley, 2008, de Boer et al. 2008)
- <u>Two limits</u>

<u>Salinity contrast driven by the atmosphere</u>

Geographical factors invoked in the literature:

- The "long America"/"short Africa"
- The effect of the Mediterranean
- The northward extension of the Atlantic
- The difference in surface wind features
- Topographically-forced stationary waves

Double-Drake

 \rightarrow reproduces the observed OHT basin asymmetry

Overturning Circulation

Equivalent to the observed E-P asymmetry

A difference in precipitation or in evaporation?

Ocean freshwater transport

Atmospheric Zonal moisture flux: Flux out > flux in @ all latitudes

Switch experiment

Re-start run with Temp/Salt of Small basin as Initial Conditions in Large basin and vice-versa

-250-500 -750 -1000 -2000 Large Basin Small Basir -3000 -20 40 60 80 -20 20 60 80 0.65 ... but still looses

Large basin is now warmer, saltier, has dense water formation, a deep MOC, and a higher rate of evaporation ...

After 10 years

• E-P contrast between the two basin

$$(E - P)_{SMALL} > (E - P)_{LARGE}$$

- Not because of higher rate of evaporation
- but a deficit of precipitation

- \rightarrow In Double-Drake: width of the basins
 - Water evaporated over the Small basin is rained out into the Large basin
- → Other Models: Mountain range (Sinha et al. 2012, Schmittner et al. 2012)
 - Rocky mountains force precipitations in Pacific
 - Low Isthmus of Panama

Geology and paleoproxies indicate Earth climate went through very different states

"Moderate" present-day

$$\Delta T_{Pole}^{Eq} = 30 - 35^{\circ}C$$

Glacial-Interglacial cycles

- Massive global climate shifts,
- Missing link between forcing (Milankovitch cycles?) and climate response,

Can multiple equilibria play a role in Earth's climate history?

see Benzi et al. (1982) and Paillard (1998)

Problem: multiple equilibria are commonly found in simple models, but not in complex coupled climate models.

Multiple equilibrium states in low-order models, I

Sea ice-albedo feedback: Budyko-Sellers Energy Balanced Model (EBM)

Simple Energy Balance Model

www.snowballearth.org

Multiple equilibrium states in low-order models, II

Hard to find in coupled GCM

Stommel's multiple MOC states:

- Manabe and Stouffer (1988), but flux adjustments
- "Water-hosing" to reveal MOC multiple states:
 found in EMICs (Rahmstorf et al. 2005), but flux

adjusments, EBM, ...

- not in IPCC-class models (Stouffer et al. 2006)
- One intermediate model (Hawkins et al. 2011)

Sea-ice albedo feedback:

- Langen and Alexev (2004): atmosphere only GMC
- Marotzke and Bozet (2006): a warm state and a Snowball state

How are the multiple states maintained ?

It's the shape of the OHT !

Cold State: OHT convergence arrests sea-ice expansion

Warm State:

OHT heats the poles remotely through enhanced mid-latitudes convection and greenhouse effect

Ferreira et al. (2011), Rose and Ferreira (2012)

Atmosphere + slab mixed-layer ocean

OHT is prescribed, 50 m deep mixed-layer

- Meridional structure of the OHT is key to obtain 3 stable states,
- •OHT convergence controls ice edge location of Cold state,
- Existence of the multiples states does not depend on details of the OHT.

Ocean-Atmosphere EBM

Building on Rose and Marshall (2009), key differences with the "classical" EBM:

- A coupled ocean-atmosphere EBM,
- OHT has a meridional structure,
- sea ice insulates the ocean.

$$C_{a} \frac{\mathscr{T}_{a}}{\mathscr{T}_{t}} = D_{y} \overset{\mathfrak{A}}{\underset{e}{\in}} C_{a} K_{a} \frac{\mathscr{T}^{"}_{o}}{\mathscr{T}_{y} \overset{\circ}{\otimes}} + F_{up} - F_{out} \qquad \text{Atmosphere}$$

$$C_{o} \frac{\mathscr{T}_{o}}{\mathscr{T}_{t}} = D_{y} (H_{o}) - F_{up} + L \stackrel{\sim}{} S \qquad \text{Ocean}$$

OHT has a diffusive form with a non-uniform K:

$$H_o = C_o K_o(y) \frac{\Re T_o}{\Re y} \quad \text{with} \quad K_o(y) = fct(t_x(y))$$

Ocean-Atmosphere EBM

Transition between states

RidgeWorld

Global energy transports

• Global OHT : complex pattern of strengthening and weakening

- AHT: Compensating changes in latent/sensible heat transports
- → Opposite changes in the 2 hemispheres
- → strong (non-linear) effects of the sea ice edge
- \rightarrow Increased "storminess" in SH

Surface Winds

In glacial climate:

- Trade winds strengthen (as do the Hadley circulation)
- SH westerly winds shift equatorward ~1.5 deg
- and weaken ~10%

 \rightarrow Driven by equatorward expansion of sea ice

Paleoproxie: no consensus (Shulmeister et al. 2004, Kohfeld et al. 2016) PMIP simulation: no consensus (Sime et al. 2016)

-10 0 10 Latitude

Western Atlantic Glacial δ¹³C (PDB)

10 20 30 40 50

In "Glacial" state:

Curry and Oppo 2005

60 70

- Shallower, weaker "NADW",
- Deep convection shifted by 15° southward
- Nutrient-rich AABW-like water

-60 -50 -40 -30 -20

• Depleted upper ocean,

See also Lynch-Stieglitz etal. 2007

In "Glacial" state:

Curry and Oppo 2005

- Shallower, weaker "NADW",
- Deep convection shifted by 15° southward
- Nutrient-rich AABW-like water
- Depleted upper ocean,

See also Lynch-Stieglitz etal. 2007

How is carbon stored in the "Glacial" ocean?: Mechanism

- Increased sea-ice cover reduces the ventilation of upwelled deep waters: DIC accumulates in the deep ocean: Stephens and Keeling (2000)
- Winds and upwelling rate in the Southern
 Ocean play little role (≠ Toggweiler and collaborators' mechanism)
- Other mechanisms in literature, no consensus

How is carbon stored in the "Glacial" ocean?

- ocean carbon-cycle model coupled to atmospheric CO₂,
- Identical inventories of carbon, alkalinity, and phosphate in the 2 states,
- the atmospheric CO_2 is not radiatively active.

<u>Change ("InterGlacial" \rightarrow "Glacial") in 3 carbon reservoirs:</u>

Overestimated C_{sat} (Δ T=-7.7 ° C): -23±8 ppm for Δ T=- 2-4 ° C

Summary of the changes: Simulation versus Paleoproxy

NH large sea expansion : consistent with paleproxies (de Vernal et al. 00)

Curry and Oppo 05, Lynch-Stieglitz et al. 07, but Gebbie 14

Easy to find in simple "toy" models ...

Multiple states of ice edge

