

指景

これまで彗星は遠いどこかから来ると考えられていた。

96年 エルストピサロ彗星がメインベルト帯で観測される 05年 リード彗星が観測される

メインベルト帯に氷があると考えられるようになった。

メインベルト彗星

	氷の昇華	衝突	自転崩壊
(596) Scheila	×	Ο	×
(62412) 2000 SY178	×	?	Ο
133P/Elst-Pizarro	Ο	×	Ο
176P/LINEAR	Ο	?	×
238P/Read	Ο	×	?
259P/Garradd	Ο	?	?
288P/300163	Ο	×	?
311P/PANSTARRS	×	×	Ο
313P/Gibbs	Ο	×	?
324P/La Sagra	Ο	×	?
P/2010 A2	×	Ο	?
P/2012 F5	×	?	Ο
P/2012 T1	Ο	×	?
P/2013 R3	?	×	Ο

ミッション定義

• メインベルトの彗星の起源を知る

彗星へ行き、地表・内部の物理計測を行い、 過去に計測の行われた小惑星や彗星の記録と比 較、検討する

ミッション要求・システム要求

ミッション要求	システム要求
Minimum	
・核表層の観察	・可視撮像
・水の D/H 比測定	・高分散サブリミナル分光
Full	
・含水鉱物の有無を確認	・近赤外分光
・内部構造の測定	・電波サウンダー、ミュオグラフィ
Extra	
・放出ガスCN/H2O比測定	・可視撮像、近赤外分光
·彗星物理量測定	
(地表温度、アルベド、放出ガス量)	

ターゲット彗星

• 238P/Read (Main belt comet)

半径	0.8 km
近日点	2.36 AU
遠日点	3.96AU
公転周期	5.63 年

238P/Read Active 期間

ミッションスケジュール

時期	イベント
0年	打ち上げ
0~5年	スイングバイにより軌道遷移
5年	Read彗星に到着
5~10年	1周期目の観測
10~15年	2 周期目の観測
15年	Read彗星に衝突させ、探査機を破壊し運用修了

打ち上げロケット: Atlas V (C3の値と価格)

• 探査機(WET):2600kg

No	質量配分項目	kg	仮定
1	推薬量	1050	ホーマン型軌道からのΔVと軌道変移を電気推進 で行うと仮定した場合のWETと推薬量の比
2	バス系	1050	ロゼッタのバス部重量、はやぶさ2のWETとバス部重量の比
3	ミッション系	500	ミッション要求より決定

No	燃料配分項目	kg	仮定
1	NTO/N2H4	550	ミューオグラフィ機をread彗星に着陸させるのに必要な燃料重量 : はやぶさ2のWETと燃料費の比 10年間彗星で運用するのに必要な燃料重量 : 全重量が類似する準天頂衛星みちびき10年運用に必要な推薬量で十分
2	Xe	500	ホーマン型軌道からのΔVと軌道変移を電気推進で行うと仮定した場合 の重量

彗星核表層およびテイルの観測

望遠鏡・可視撮像カメラ

◆ミッション要求

- 核表面全体の3 mスケールまでの詳細構造を調べる - 放出ガス中のCN輝線強度(λ=388 nm)を調べる

◆システム要求

- 高度100 kmから直径800 mの視野内を1 mの空間分解能で観測できる
- λ = 388 nmの前後の特定の波長で太陽散乱光(連続光)の5 × 10⁻⁷ erg/cm²/arcsec² 程度の強度を計測できる
- λ =388 nmで 1 × 10⁻⁶ erg/cm²/arcsec² 程度の強度を測定できる

◆システム設計

(望遠鏡)

口径:6 cm

視野:0.5 deg²

(可視撮像カメラ)

- 広帯域フィルター(400-800 nm)
- 狭帯域フィルター(350 nm / 388 nm / 450 nm)

空間分解能:2 arcsec

ヘテロダイン分光器

- ◆ミッション要求
 放出ガス中の水のD/H比を調べる
- ◆システム要求
 - 509, 557 GHzのH2O, HDOの輝線強度をR>10000の高い波長分解能で計測 できる
- ◆システム設計
 - 以下の4つの装置を用いる。
 - ・ミクサ
 - ·局部発振器
 - ・アンプ
 - ・フーリエ分光計 周波数帯域:450-600 GHz
 - 周波数分解能: $\Delta v = 0.1$ MHz

近赤外線スリット分光カメラ

◆ミッション要求

- 含水鉱物の有無、あればその種類を調べる

- 放出ガス中のH2O輝線強度(λ~3μm)を調べる

◆システム要求

-含水鉱物に特徴的な反射光の吸収(λ~3µm)を検出できること -露光時間等の調整によって、放出ガス中のH2O輝線強度(λ~3µm)と表面 反射光(~1×10⁻¹⁴erg/cm²/arcsec²)のどちらも検出可能であること

システム設計 - 波長帯域 2-4 µm - R=100 1.4 0.4

内部構造を明らかにし、ダストマントル等の層構造の有無を解明

- ・電波サウンダー: 地表と内部の応答速度差を計測
 →モデルシミュレーションに適用
- ・ミュオグラフィ: 彗星内部を透過したミュー粒子数を計測
 →断面図の密度分布作成
- Read彗星、観測深さ5m (1m程度のダストマントル存在を仮定)

電波サウンダ(CONSERT)

電波反射深さ	20m程度(材質次第)
周波数	90 MHz
大きさ	1×1 m²(L型)
総重量	2 kg
消費電力	2W

ミュオグラフィ

空間分解能	最低 0.6m
構造	5層構造
大きさ	$1 \times 1 \times 1 \text{ m}^3$
総重量	115 kg
消費電力	20W

XHiroyuki K.M. Tanaka

*CONSERT: COMET NUCLEUS SOUNDING EXPERIMENT BY RADIOWAVE TRANSMISSION

福本 Speaking

∆∨の計算

$\frac{\Delta V1(m/s)}{\Delta V2(m/s)}$ $\frac{\Delta V(km/s)}{Vinf(km/s)}$ $C3((km/s)^2)$	1.950438 5.78963 7.740069 1.950438 3.80421		
	238P/Read	133P/Elst-Pizarro	
近日点距離	2.3647	2.6524	\neg \checkmark \checkmark
遠日点距離	3.9645	3.66751	
離心率	0.25277	0.16062	
公転周期	5.63	5.62	
軌道面角度	1.2662°	1.3873°	

Y

参考資料:質量配分

	rosetta	hayabusa2		us(ratio)	us(true)
	mass(kg)	mass(kg)	mass(%)	mass(kg)	mass(kg)
structure		69.15	11.5	232.7822	232
thermal control system		32.29	5.4	108.699	40
Attitude and orbit control		63.57	10.6	213.998	70
Power		70.72	11.8	238.0673	150
communication		30.15	5.0	101.495	40
data handing unit		9.55	1.6	32.14851	10
propulsion system		116.74	19.5	392.9861	392
cable		32.08	5.3	107.9921	107
bus total mass	1019	424.25	70.7	1428.168	1041
science mass	344	80.75	13.5	271.8317	500
DRY		505	84.2	1700	1541
Хе		60	10.0	201.9802	513
NTO/N2H2		35	5.8	117.8218	541
FUEL	1637	95	15.8	319.802	1054
WET	3000	600		2019.802	2595

参考資料:太陽電池パネル

	g∕w at 1AU	g/w at 3.163AU	need W	need kg
hanikamu	7.14	71.43262266	5000	357.1631
CFRP	1.72	17.20785868	5000	86.03929

参考資料:内部構造測定(計算)

ミッション要求: 密度分布を明らかにし、ダストマントル等の層構造の有無を解明する システム要求:

電波サウンダー : 応答速度の差を計測し、モデルシミュレーション ミュオグラフィ : 断面図の密度分布を測定

彗星	天体全体の密度[g/cm3]
イトカワ(S 型小惑星)	1.9
マティルド(C型小惑星)	1.3
一般的な彗星	0.6
Read	1.0(推定※)

XHsieh、

2009

最大透過距離 [m] = 2 × √半径² - (半径 - 地表からの観測深さ)² 飛程 [g/cm2] = 最大透過距離 [cm] × 密度 [g/cm3]

Read彗星、観測深さ5m(1m程度のダストマントル存在を仮定)の場合 最大透過距離[m] = 126.09 m 飛程 [g/cm2] = 12609 g/cm2 この飛程をもつ高Eミューオンの存在確率1/173

ミュオグラフィによる小惑星の3次元透視を行ったシュミレーション結果と 透過ミューオン数がほぼ同程度

ミュオグラフィによる小惑星の3次元透視を行ったシュミレーション結果 米東京大学大学院、長原翔伍(2003)

測定日数は1面につき一年 断面積250m²の小惑星を想定したシュミレーションの結果、1年で有意な密度分布が得 られる

二枚以上の検出装置で入射ミュオンの透過軌道を決定 透過ミュオン数は密度に依存するため線密度分布を測定できる

参考資料:ノイズ削減方法

※田中宏幸、東京大学地震研究所(2011)

従来と比べて90%ノイズ削減