Primitive Asteroids: Insight into the Formation and Evolution of the Solar System

Artist's impression of the asteroid belt. Image credit: NASA/JPL-Caltech

Driss Takir USGS Astrogeology Science Center, Flagstaff, Arizona

December 04, 2016 Kobe University, Center for Planetary Science

<u>Outline</u>

- Background about asteroid/meteorite science
- Ground-based astronomy of primitive asteroids
- Laboratory studies of primitive meteorites
- Linking primitive asteroid-meteorite science
- NASA's OSIRIS-REx mission to asteroid Bennu
- JAXA's Hayabusa2 mission to asteroid Ryugu

Solar Nebula

An artist's conception of the solar nebula, surrounding the violent young sun Credit: Dr. William K. Hartmann, Planetary Science Institute, Tucson, AZ

<u>Meteorites: a record of nebular &</u> <u>Planetary processes</u>

CM: Carbonaceous Chondrites Mighei-like

CI: Carbonaceous Chondrites Ivuna-like

Chondrules

Image courtesy of G.K. Benedix (NHM) https://physics.ucf.edu/~campins/paris2011/

Hydrated Minerals

- Hydrated minerals: any mineral tha contains structurally bound OH or H₂O
- 275 different mineral species reported in meteorites
- 78 different hydrated minerals in meteorites

Graph courtesy of G.K. Benedix(NHM) https://physics.ucf.edu/~campins/paris2011/

Hydrated Minerals

Brearley (2006) & Zolensky (2011) https://physics.ucf.edu/~campins/paris2011/

es	CI	CM	CO	CV	CB/CH	CR	Tagish Lake
Phyllosilicat	Serpentines Saponite	Serpentines Chlorite Vermiculite Garnets	Serpentine Chlorite	Serpentines Chlorite Micas Amphiboles Garnets Fayalite Hedenbergite	Serpentine	Serpentine Saponite	Serpentine Saponite
Carbonates	Calcite Dolomite Breunnerite Siderite	Calcite Dolomite Aragonite				Calcite	Calcite Dolomite Breunnerite Siderite Magnesite
Sulfides	Pyrrhotite Pentlandite Cubanite	Pyrrhotite Pentlandite Tochlinite		Pyrrhotite Pentlandite		Pyrrhotite Pentlandite	Pyrrhotite Pentlandite
	Sulfur	Awaruite					
Phosphates	Apatite Merrilite						
Oxides	Magnetite	Magnetite		Magnetite		Magnetite	Magnetite
Hydroxides		Brucite Tochilinite					
Halides		Halite					
	Sulfates???	Sulfates???					NO SULFATES

Asteroid Spectroscopy in VNIR

Credit: http://www.pion.cz/en/article/electromagnetic-spectrum

 $Credit: http://www.thewhitegoddess.co.uk/the_elements/the_planets/the_sun.asp$

Remote Sensing: Crystal Field Theory

• Partially Filled d-orbital of Fe²⁺:

 Δ_{O} is the energy difference between the ground state and the upper state (excited)

Mineralogy & Remote Sensing •Early Solar System 1) H₂O + (Fe metal, sulfide) = Tochilinite 2[(Fe,Mg,Cr,Ni[])S]•1.57-1.85[(Mg,Fe,Ni,Al,Ca)(OH)] 3-µm asymmetric stretch 2) Solution + Silicates = Fe-rich phyllosilicates ✓ Cronstedtite- Fe₂⁺²Fe⁺³(Si, Fe⁺³O₅)(OH)₄ 0.7-μm charge transfer 3-μm asymmetric stretch 3) Mg-phyllosilicates are last to form ✓ Mg-serpentine(chrysotile/lizardite/antigorite)- Mg₃Si₂O₅(OH)₄ 3-µm asymmetric stretch ✓ Saponite- (Ca, Na)_{0.3}(Mg, Fe⁺²)₃(Si, Al)₄O₁₀(OH)₂[●] $_{4H_{2}O}$ 3-µm symmetric stretch ✓ Vermiculate- (Mg, Fe²⁺, Al)₃(Al, Si)₄O₁₀(OH)₂ \bullet 4H₂O 3-μm symmetric stretch 2.2-µm OH-metal

Remote Sensing: Water Vibrations

FIG. 2. — The fundamental internal vibrational modes of the free H_2O molecule. The O-H stretching mode of OH^- is the same as either of the stretching modes shown with one of the hydrogens removed. S.J. Gaffey (1988)

Molecular vibrations also produce spectral features

Main Asteroid Belt

Credit: Minor Planet Center

Asteroid Taxonomies

Tedesco et al. (1989)

Main Belt Taxonomy (Classification)

Open questions :

- The hydration state of these asteroids
- The nature of phyllosilicate mineralogy on the surface of these asteroids

Asteroid-Meteorite Research

Research's Goals & Motivation

The goal: is to apply the 3-µm spectral indicators (e.g., band center, band shape, band depth) in CM and CI chondrites to outer Main Belt asteroids (2.5 < a < 4.0 AU)

To better understand

Hydration state of these asteroids Nature of phyllosilicate mineralogy on their surfaces

Broad implication

Address the question of the abundance and distribution of H_2O in the early Solar System and test current theories on the formation and evolution of the giant planets in the early Solar System.

Asteroid Observations

- Observations: 45 asteroids (2009-present)
 - ✓ NASA Infrared Telescope Facility (IRTF)
 - ✓ 3-m telescope on Mauna Kea, Hawai'i
 - ✓ SpeX: Prism (0.8-2.5- μ m) and LXD (1.9-4.1- μ m)
- Data reduction: IRTF Spextool & IDL custom routines
- We are observing 6o additional primitive asteroids in the next three years (IRTF & Gemini North)

<u>Asteroid observations: Difficulties &</u> Procedures

Atmosphere not 100% transparent (the OH band at 2.7 µm is not observable from Earth) Thermal Excess(tail)

(for most main-belt low-albedo asteroids the thermal contribution is 1–10% of the total flux at 3.1-3.5 μ m)

- Observe object and nearby star (~few degrees)
- Subtract nearby (~10 arcsec) sky emission
- Divide object by star (remove transmission & solar spectral shape)
- Average all frames

NASA IRTF Spectrometer

Asteroid observations: SpeX is used in the low-resolution mode (R~95) Prism (0.8-2.5-μm) and LXD (1.9-4.1-μm) mode

"Sharp" group: OH-stretching (phyllosilicates)

Takir & Emery(2012)

"Rounded" group: H₂O ice

"Ceres-like" group: Ammoniated Phyllosilicates

Takir & Emery(2012)

"52 Europa-like" group: phyllosilicates (with interlayer H_2O)?

Takir & Emery(2012)

Intriguing Orbital Distribution

Takir & Emery(2012), Takir et al. (2015) + additional asteroids

Water Detected on largest Metallic Asteroid in Solar System: Psyche

Takir et al. (2016)

Meteorite Petrology, Mineralogy, and Spectroscopy

- Carbonaceous chondrites (powders & thin sections):
- Petrology & geochemistry (UTK)
- NIR reflectance spectroscopy (USGS & APL)
 - ✓ ASD spectrometer(0.35-2.5 µm)
 - ✓ Nicolet (FTIR: 1.3 to 15.5 μm)
 - ✓ Bruker Vertex-70 FTIR
- Raman spectra (Wash U)
- High resolution SEM imaging (USGS)

"CM Group 1": Fe-serpentine (cronstedtite) rich

"CM Group 2": Intermediate b/w Fe & Mg-serpentine Takir et al. (2013)

"CM Group 3": Mg-serpentine-rich

Takir et al. (2013)

"CI Ivuna": Mg-serpentine-rich

Takir et al. (2013)

Takir et al. (2013)

<u>Degree of Aqueous Alteration & the</u> <u>3-µm band</u>

Asteroid & Meteorite matches

Takir et al. (2015)

<u>NASA's OSIRIS-REx Mission to a</u> <u>Primitive Asteroid</u>

OSIRIS-REx Defined

Origins

- Return and analyze a sample of pristine carbonaceous asteroid regolith
- Spectral Interpretation
 - Provide ground truth for telescopic data of the entire asteroid population
- Resource Identification
 - Map the chemistry and mineralogy of a primitive carbonaceous asteroid
- Security
 - Measure the Yarkovsky effect on a potentially hazardous asteroid
- Regolith Explorer
 - Document the regolith at the sampling site at scales down to the sub-cm

Asteroid (101955) Bennu

- Formally named 1999 RQ36
- Bennu is an Egyptian mythological bird that was born from the heart of Osiris
- It is associated with the Sun, creation, and renewal
- The name was selected in an international contest run by the Planetary Society

Image credit: http://www.touregypt.net

Asteroid Bennu is well-characterized

- Images used to construct a geologically detailed threedimensional model and define the rotation state
 - Size = 492-m (±20 m, mean diameter)
 - Shape = spheroidal "spinning top"
 - Rotation state = 4.3 hr period, 180° obliquity
- Radar also probed the near-surface bulk density and structure

OSIRIS-REx Instruments

SamCam images the sample site, documents sample acquisition, and images TAGSAM to evaluate sampling success

MapCam provides landmark-tracking OpNav, performs filter photometry, maps the surface, and images the sample site

PolyCam acquires Bennu from >500K-km range, performs star-field OpNav, and performs high-resolution imaging of the surface

OCAMS

(UA)

OLA (CSA) provides ranging data out to 7 km and maps the asteroid shape and surface topography

OSIRIS-REx Instruments

OVIRS (GSFC) maps the reflectance albedo and spectral properties from $0.4 - 4.3 \ \mu m$

OTES (ASU) maps the thermal flux and spectral properties from $4 - 50 \mu m$

Radio Science (CU) reveals the mass, gravity field, internal structure, and surface acceleration distribution

REXIS (MIT) is a Student Collaboration Experiment that trains the next generation of scientists and engineers and maps the elemental abundances of the asteroid surface

Sample Collection System: TAGSAM

Successful Launch of OSIRIS-REx a Few Weeks Ago

Cape Canaveral, FL ULA's Atlas V rocket September 8, 2016 ~7:05 pm EDT Credit: NASA & OSIRIS-REx

OSIRIS-REx Timeline

- Selection: May 25, 2011
- Confirmation: April, 2013
- Spacecraft Assembly: February, 2015
- · Launch: September, 2016
- Bennu Arrival: August, 2018
- Bennu Departure: March, 2021
- Sample Return: September, 2023
- End of Mission: September, 2025

JAXA's Hayabusa2 Mission to a Primitive Asteroid

Highlights of Hayabusa2 Mission

Hayabusa2 is the 2nd Japanese sample return mission to small body. JAXA launched Hayabusa2 in 2014, which will explore the C-type asteroid *Ryugu (1999JU3)*, and will return back to the Earth in 2020.

- Round-trip mission
 - High specific impulse ion engine for continuous-thrust trajectory control.
- In-situ science at "Ryugu"
 - 1.5year proximity operation at "Ryugu"
 - Four landers, four remote science instruments.
- Touch down & sample collection
 - Two normal touch down, one pin-point touch down (to the artificial crater) are planned.
- Artificial crater generation
 - Kinetic impact on the asteroid surface to create a 2m-class crater.
 - Sub-surface structure of the asteroid can be acquired.

Hayabusa2 Spacecraft (1/2)

Hayabusa2 Spacecraft (2/2)

Robotic Exploration with 12 Deployable "Robots"

Hayabusa2 Timeline

Solar Nebula

An artist's conception of the solar nebula, surrounding the violent young sun Credit: Dr. William K. Hartmann, Planetary Science Institute, Tucson, AZ