Asteroid Impact & Deflection Assess mission to the binary NEA Didymos

Dr. Patrick Michel AIM Science Lead

ESA UNCLASSIFIED - For Official Use

Observatoire de la Côte d'Azur, Nice, France

First japanese to visit France in 1615

TSUNENAGA HASEKURA

- 復路

= • • • • • •

EUROPEAN BACKGROUND

ESA has been studying the role of space missions with respect to the NEO impact hazard since 1998 (Euneos, Nero, Earthguard, Simone, Ishtar, Don Quijote, Sancho, Proba-IP):

Nero

Euneos

Ea

Earthguard

Simone

Don Quijote

- ESA Agenda 2015 calling for "...initiating a planetary defence mission (possibly in cooperation with non-European partners) [which] would increase Europe's competitiveness since such a mission would require the development of new technologies also relevant to other missions."
- Leveraging on ESA systems and technology activities in several programmes: from Science to Mars Robotic Exploration, Lunar Lander as well as relevant activities in national Agencies (e.g. CNES, DLR). Numerous developments and lessons learned from past missions applicable to AIM (e.g. Rosetta, Proba...).

AIDA COOPERATION Asteroid Impact & Deflection Assessment COS

- Two **simple**, **independent** and **self-standing** mission developments operated in coordination:
 - demonstrate the ability to modify the orbital path of Didymoon and measure the deflection by monitoring the binary's orbital period change
 - measure all scientific and technical parameters to interpret the deflection and extrapolate results to future missions or other asteroid targets

= II 🛌 == + II = 😑 = II II = = = 🖼 🛶 🔯 II = = 🗮 🗮 💥 IV

· = ■ ► = + ■ + ■ ≡ = 1 ■ ■ = = = ₩ ■ ■ ■ ■ ■ ■ ■ ₩ . !•!

OVERLAPPING GOALS OF NEO MISSIONS

Science

Planetary Defense

Deflection demonstration and characterization Orbital state Rotation state Size, shape, gravity

Geology, surface properties Density, internal structure

Sub-surface properties

Human Exploration

Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Composition (mineral, chemical) Radiation and Dust environment AIDA Deflection demonstration and characterization Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub-surface properties Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub-surface properties Composition

Resource Utilization

Geology, surface properties Density, internal structure Sub-surface properties Composition (mineral, chemical)

AIDA target: The binary asteroid Didymos

European Space Agency

٠

AIDA Target

The binary Near-Earth Asteroid 65803 (1996 GT) Didymos

- Discovered in April 1996
- Perihelion distance 1.01 AU
- Aphelion distance 2.3 AU
- Close approach to Earth in Oct 2022
- 0.07 AU range provides opportunity for ground observation of impact event
- (YORP spin-up) binary system
- 770 m primary (rotation period 2.26 hr)
- 163 m secondary (synchronous?)
- Secondary in 11.9-hr orbit
- Distance between primary's and secondary's centers: 1.1 km

Doppler frequency (0.3 Hz/column) -->

Radar image of Didymos From L. Benner, Arecibo, Nov. 2003

Primary: Secondary: Didymain Didymoon

Didymos: Spectral type

0.9

0.8

0.6

0.8

1.2

- Limited wavelength coverage by Binzel et al. (2004)
 - Classified as Xk
- Expanded coverage by de León et al. (2010)
 - Pretty clearly S type
 - Not exotic or new type
 - Context for Eros/Itokawa
 - Likely meteorite analog: Ordinary Chondrite
 - Very common meteorite

433 Eros (Binzel et al.)

1.8

1.6

Wavelength (Mm)

25143 Itokawa (Binzel et al)

2.2

2.4

First Kinetic Impact Test at Realistic Scale for Planetary Defense

DART target much smaller than the Deep Impact target

> Comet 9P/Tempel 1 Deep Impact target

> > DART target Didymos moon

DIDYMOS: A PERFECT TARGET

- Asteroid observed by ground telescopes and radars
- Heliocentric orbit well known
- Shape and size of primary well known (not Didymoon)
- Orbit plane orientation to be confirmed in 1Q 2017 (observations planned with European observatories)
- Didymoon size representative of a potentially hazardous object (generating casualties independently from impact location on Earth)

Chelyabinsk meteor (Feb 2013): 1500 injuries, 7200 damaged buildings

_ II 🛌 := 🖛 + II 🗯 🔚 II II _ _ _ = := II II II . . .

OSIRIS-REx and Hayabusa 2

- First detailed characterization and surface response of two primitive asteroids in different gravity conditions
 - •Ryugu is 900 meter wide
 - •Bennu is 500 meter wide

- Didymos is ~ 3 times less wide than Bennu
 - •Another step in low gravity levels
 - Possibility to understand how some processes scale with gravity down to the low-g of Didymoon (targets for mining)

_ II ⊾ II = + II = ≝ _ II II _ II _ II _ II = II II X . .

ASTEROID IMPACT MISSION (AIM)

Small mission of opportunity to explore and demonstrate technologies for future deep-space missions while addressing planetary defence objectives and performing asteroid scientific investigations.

AIM "FIRSTS"

First mission to demonstrate interplanetary optical communication and deep-space inter-satellite links with CubeSats and a lander in deep-space.

First mission to **measure** and **characterize asteroid deflection** by determining the "ejecta momentum amplification factor" of a kinetic impactor.

First mission to **study a binary asteroid**, its **origins** and sound the **interior structure** providing clues of its formation process.

AIM MISSON OBJECTIVES

Demonstrate technologies for future deep-space missions:

- Deep-space optical communication
- Deep-space inter-satellite links with CubeSats/µlander
- Semi-autonomous operations in low-gravity

Demonstrate the ability to **modify the orbital path of Didymoon** and measure the deflection by monitoring the binary's orbital period change

- Measure all scientific and technical parameters to **interpret the deflection** and extrapolate results to future missions or other asteroid targets
- Correlate ground-based observations with in-situ measurements

Answer fundamental questions on our Solar system:

- Are parameters (scaling laws) used in collisional models valid?
- what physical processes lie behind the formation of binary asteroids?
- what is the internal and subsurface structure of the natural satellite of a binary NEA?
- what links can be established between subsurface and the surface properties?
- _ II _ what are the mechanical properties of a small acterside swiface? Cohesion 2pean Space Agency

AIM (alone) PRIMARY SCIENCE OBJECTIVES

PARAMETER	RELEVANCE	SUPPORTING INSTRUMENTS
S#1 Didymoon size, mass, shape, density	Mass => momentum size => shape, volume, gravity density => internal structure	Camera (VIS), LIDAR (OPTEL-D), radio tracking
S#2 Didymoon dynamical state	Momentum transfer Indirect constraints on interior structure	VIS
S#3 Geophysical surface properties, topology, shallow subsurface	Composition, mechanical properties, thermal inertia =>Interpretation of impact	VIS, Thermal Infrared Imager (TIRI), High Frequency Radar (HFR), Accelerometer on MASCOT
S#4 Deep-internal structure of the moonlet	Interpretation of the impact Origin of binarity	Low Frequency Radar (LFR)
S#5 Optical, IR, Radar calibration	Simultaneous ground and space-based measurements to calibrate ground-based observations and extrapolate to other objects observed from the ground.	VIS, TIRI, HFR

AIM (with DART) SECONDARY SCIENCE OBJECTIVES CESA

PARAMETER	RELEVANCE	SUPPORTING INSTRUMENTS
S#6 Didymoon post-impact characterisation	Changes due to impact	All
S#7 Didymain characterisation	Origin of the system	VIS, TIRI, HFR, LFR
S#8 Impact ejecta	Porperties of ejected dust	VIS, TIRI, HFR
S#9 Ambient dust	Dust in Didymos environment	VIS, TIRI, HFR
S#10 Chemical and mineralogical composition	Asteroid classification, origin of the system	VIS (TBC), TIRI, MASCOT-2 lander

MAIN OBJECTIVES RELATED TO MITIGATION

First mission to measure properties to interpret an impact (DART) and inform mitigation:

- Target's mass and shape
- Dynamical state of the target(before/after impact)
- Surface and subsurface properties (FIRST TIME)
- Deep interior properties (FIRST TIME)

MASS DETERMINATION OF A SMALL ASTEROID MOON

- Mass measured to an accuracy of 10 % required to
 - Scale the impact experiment
 - Interpret the observations by AIM to constrain the mechanism of binary formation
- Translates to wobble measurement with accuracy of about 1m

ROLE OF COLLISIONS IN THE SOLAR SYSTEM

COLLISIONS AND INTERNAL STRUCTURE KNOWLEDGE

A big step in our understanding of the geophysics of small asteroids:

- Asteroid structures are tracers of the origin and evolution of the Solar System
- Asteroids formation and evolution glean insights into the history and properties of debris disks and planetary systems around other stars

FATE OF CRATER EJECTA IN A BINARY SYSTEM

AIDA will allow us to check/refine our understanding of impact physics at asteroid scale

Ejecta evolution under:

- Didymos' gravity
- Solar tides
- Solar radiation pressure

Yu, Michel, Schwartz 2016. Icarus, in press

INTERNAL STRUCTURE

Current knowledge from both observations and modeling suggest that larger NEOs (> 200m BUT <50km) are rubble piles (or are at least heavily shattered)

→ NO DIRECT MEASUREMENT AVAILABLE !

The set of th

Surface interaction (lander, sampling device, impact) **@esa** in low-g environment?

H-2 MASCOT lander bouncing Ryugu (900 m) g-conditions (C. Maurel, P. Michel, R.L. Ballouz) O-REx TAGSAM compliance Bennu (500 m) g-conditions (R.L. Ballouz, P. Michel, D.C. Richardson) H-2 sampling mechanism Ryugu (900 m) g-conditions (S. Schwartz, P. Michel, D.C. Richardson)

Modeling efforts have not been validated with an experiment in same conditions

× +

Asteroid Bennu 2008, . ש Howell et Single ACM

 \bigcirc Asteroid 1994 2011 Brosovic et al. Triple

PREVALENCE OF "TOP SHAPES"

2004 2008, **Binary Asteroid** aylor et al. \geq

I+I

1999 et al. 2005 Asteroid Binary Ostro KW4

Asteroid 2008 EV5 Busch et al. 2011 Single

Becker et al. 2008

SN263

Binary formation: Spin-up by YORP?

 \mathcal{A}

- Spin state change due to reflectance/re-emission of absorbed solar radiation.
- Depends on body size and distance from Sun.
- Spin-up timescale ~Myr.

54509 YORP: 12.2-minute rotation and speeding up...

Binary formation: Spin-up by YORP?

 \mathcal{A}

- Spin state change due to reflectance/re-emission of absorbed solar radiation.
- Depends on body size and distance from Sun.
- Spin-up timescale ~Myr.

54509 YORP: 12.2-minute rotation and speeding up...

Simulating binary formation by YORP

Rotational breakup as the origin of small binary asteroids

Kevin J. Walsh^{1,2}, Derek C. Richardson² & Patrick Michel¹

YORP spinup can explain the top shape of the primary CS eSa and secondary/primary size ratio

ESA UNCLASSIFIED - For Official L

European Space Agency

÷

BREAKTHROUGH IN UNDERSTANDING BINARIES FORMATION

 \rightarrow Mainly: two different models are proposed to form binaries

_ II ⊾ II = + II = ≝ _ II II _ Z = H = Ø II _ II = II ₩ ...

- Several options studied in detail to prepare for proper interfaces and proximity operations.
- Announcement for payload opportunities to be released in Jan 2017 (after CM16).

Legend:	Potential provider companies (country)
	Built-in AIM S/C (GNC subsyste

4

AIM Framing Cameras (AFC), Hyperspectral Imager

Flight Spares of the DAWN cameras

(5.5° FOV, 93.7 µrad/pixel, 400-1000 nm, 7 filters)

- spacecraft GNC system, provided by MPI for solar system research
- Used for spacecraft navigation but also science
- Navigation currently being tested at GMV with QM

Linear Variable Filter Systems and Telescope Systems and Systems a

PLANETARY RESOURCES INC. (LUX), AMOS (BE), VITO (BE), COSINE (NL)

Compact Hyperspectral imager

- Grating spectrometer or linear filter fixed on CMOS detector
- Large detector, 7 x 9 deg. FOV at 8 arcsec/pix
- Spectral resolution 5-10 nm
- Wavelength range 470-950 nm
- Developed for Earth observation

The set = + 11 = ≤ = 11 11 = = ≤ ≈ ∞ 0 11 = ≈ ≈ ∞ 1 × ∞

MASCOT-2 µLANDER, LOW-FREQUENCY RADAR

MASCOT-2 µlander

- Development based on MASCOT-1 currently on JAXA's Hayabusa-2 mission
- + Size: 33 x 30 x 21 cm
- + Mass: 15 kg
- Deployable solar generator cover (supports orientation)
- 3 months operational lifetime
- Carries: µ-camera (CAM), low-frequency radar (LFR), radiometer (MARA), accelerometer (DACC)

DLR (DE), SSC (SE), Cobham Gaisler (SE), CBK (PL), Astronika (PL), COSINE (NL), CGS (I), SELEX (I), POLIMI (I), Space-X (CH), CSEM (CH), MCSE (CH)

Instrument design based on CONSERT

- (Rosetta)
- Spare components available and TRL6
- Radar type: Bistatic radar (between AIM and MASCOT-2)
- Carrier frequency: 60 MHz
- Bistatic operation through the secondary asteroid

IPAG (FR), LATMOS (FR), Univ. Dresden (DE), ROB (BE), Antwerp Space (BE), Astronica (PL), CBK (PL)

LANDING ON A SMALL ASTEROID MOON

- Needs accurate (position and velocity) release from close distance (200 m max.) due to proximity of primary asteroid
- Low gravity implies bouncing -> low landing velocity needed

Credit: S. Biele, S. Ulamec Yellow: first landing Green: After bouncing

LANDING ON A SMALL ASTEROID MOON

□Image Features ●Geometric Center ●CoB

DIDYMOON Spacecraft View

Spacecraft
 Didymoon
 Lander
 On-ground observations
 On-board observations

Spin.Works SA 2016 (copyright)

ELAPSED TIME : 00d00h00m

MASCOT-2 RELEASE

- 1. The main perturbation due to the uncertainty on Didymos gravity field
- 2. The minimum TD velocity from outside Didymoon SOI 5.14 cm/s (L2)
- 3. Robust landing solutions have TD velocities on the order of 6 cm/s
- 4. Uncertainty on first touch down dispersion depends mainly on uncertainty on release velocity
- 5. No targeting possible when releasing from outside SOI
- 6. 96% landing probability from
 200m with 10 m relative
 position error, 1 cm/s,
 0.9 restitution coeff.

Escape velocity from L2, ranging from ~4 to ~6 cm/s (S. Tardivel)

= II 🛌 == ++ II == 🔚 = II II = = = 🖽 🛶 🚺 II = = II 💥 🙌

European Space Agency

HIGH-FREQUENCY RADAR (HFR)

Stepped high-frequecy frequency radar

(300MHz to 2.4GHz, 108W power, 2.86kg, 37 x 37 x 27 cm3)

- + determine structure and layering of shallow sub-surface
- Ê20 + support asteroid mass determination, shape modelling and provide characterisation
- + observe ejecta cloud
- support ground-based bi-static radar measurements Arecibo, Goldstone, SRT

IPAG (FR), LATMOS (FR), Univ. Dresden (DE), ROB (BE), Antwerp Space (BE), Astronica (PL), CBK (PL)

TIRI strawman design

- Heritage: MERTIS (Bepi-Colombo), MAIR, HIBRIS, AMS
- Temperature range: 200 K 450 K
- Spectral range: 8 µm 13 µm (spectral resolution 0.3 µm) VISUAL @ 5 km
- Spatial resolution (goal): 2 m @ 10 km
- Field of view: ~5 deg., similar to cameras
- COSINE (NL), GMV (PT), GMV (RO), SODERN (F), MPI (D), DLR (D) Thermal and physical surface properties

CubeSats and inter-satellite link

European Space Agency

COPINS: A CASE FOR CUBESATS IN DEEP SPACE

ASPECT

- Vis-NIR imaging spectrometer
- Space
 Weathering
- Shock experiment
- Plume
- VTT (FI), Univ. Helsinki (FI), Aalto Univ. (FI), CAS (CZ)

AGEX

- Mechanical properties of surface material
- Seismic properties of sub-surface
- Determine kinematics prior and

ROB (BE), ISAE (FR), Antw. Space (BE), EMXYS (ES)

PALS

- Characterize magnetization
- Composition of volatiles
- Volatiles released from DART impact
- Super-resolution imaging
- DART collision and plume
 observation

IFR (SE), AAC (SE), DLR (DE), IEEC (ES), KTH (SE)

CUBATA

- Gravity field
- Observe DART impact
- Perform seismology
- Velocity field of the

GMV (ES), Sapienza Univ. Roma (IT), INTA (ES)

DUSTCUBE

- Dust properties with Nephelometer
- Mineralogical composition

•

- Compliment com demo
- Reflectance of the

Univ. Vigo (ES), Micos (CH), Univ. Bern (CH)

= 11 🛌 == + 11 = 😑 = 11 11 = = = 🖽 🛶 💷 11 = = 12 💥 🙌

AIM PLATFORM DESIGN

□ II ▶ II ■ + II ■ ⊆ □ II II □ □ H = 0 II □ H □ H = II ₩ |•|

European Space Agency

DART Baseline Trajectory (Deep Space) Earth-Centered Frame Flyby: Mar 03 2022, 640 kg, 11.37 km/s (67 day coast arc) E-60d Impact: Oct 07 2022, 529 kg, 5.92 km/s (82 day coast arc) E-10d E-30d TCM 2a TCM 2c TCM 2b E-2d Impact i TCM 2d Thrust E-1/2hr 1 Handoff to Coast SMARTNav 399 2138971 0.5 2065803 IPS Cruise ► Didymos Period 2 2001 CB21 / 0 Impact P. Flyby -0.5 -1 -1.5 **IPS** Cruise Period 1 -2.5 -2 -1.5 -0.5 0.5 1.5 -1 0 X. AU Flyby-30d тсм Sun-Centered Inertial Frame Flyby-10d *All planned, deterministic maneuvers are accomplished with IPS 2001 CB21 *Zero planned, deterministic, impulsive ΔV by mission design in baseline reference Flvb trajectory

ESA UNCLASSIFIED - For Official Use

CRATER

European Space Agency

What will DART achieve?

Before DART-AIDA

- Theoretical understanding of kinetic impactor mitigation
- Impact codes necessary for mitigation planning untested in relevant physical regime
- Realistic-sized hazardous asteroid response to impact mitigation poorly constrained in important ways

After DART-AIDA

- "Dress Rehearsal" on appropriately-sized object of most common NEO composition, demonstrating ability to intercept
- Impact codes validated and crossreferenced, allowing confident predictions in relevant situations
- Vastly improved understanding of important asteroidal physical parameters

Kinetic impactor method

Momentum transfer

• Normalized with the momentum of the projectile:

$$P_{target} = 1 + P_{ejecta} \equiv \beta \geq 1$$

Change of the target velocity

$$\Delta V = \frac{P_{target}}{M_{target}} = \beta \times \frac{P_{projectile}}{M_{target}}$$

Momentum transfer

Momentum multiplication factor

Target structure Material characteristics Impact velocity Target size etc.

from scaling laws:

$$\beta \sim \left(rac{
ho U^2}{Y}
ight)^{(3\mu-1)/2}$$

Modeling and understanding the outcome of the DART kinetic impact

		Expected ran	ed range for AIDA experimen			
	Non-porous, strong	Low porosity, Very high moderate porosity, strength weak		High porosity, weak		
β	3.32	1.1	1.23	1.3		
Crater Size [m]	4.89	3.06	8.47	5.7		
Orbiting fraction	<1%	<1%	32%	<1%		
Material Analog	Basalt	Weakly Cemented Basalt	Perlite /Sand	Sand / Fly Ash		

Cheng, Michel et al. (2016) PSS 121:27

- Porous target cases predict of ~1.1 to ~1.3 consistent with simulations, Jutzi & Michel (2014)
- Non-porous case ("Basalt") not expected to apply because of binary formation scenario
- Deflection result of kinetic impact is not appreciably affected by gravity of binary companion
- AIM measurement of crater radius is important for finding target properties

Orbiting fraction is the ejecta mass fraction captured into temporary binary orbits

The modeling and simulation effort produces predictions of parameters that can be verified by ground-based and AIM observations

Velocity Scaling of β from Lab Data and Scaling Laws The DART impact is at 6.5 km/s 10 Compact s (low bnd) net analog (low bnd) Qlivine (low bnd) River ro $\beta - 1$ Sand limit dry soil Basa Pumice Fe Meteor 0.1Aluminum Housen and Holsapple 2012 LPSC 0.01 0.110 100 Impact velocity (km/s)

Blue dashes, scaling law model with μ = 0.66, K= 0.12, Y= 18 MPa Red dashes, scaling law model with μ = 0.41, K= 0.132, Y= 0.18 MPa Scaling law models assume 300 kg DART impacts

Didymos 2022 Impact Observing Campaign

- DART impact during excellent apparition: Didymos at V ~ 14-15, very well placed for Chile, observable from other observatories
- Didymos primary and secondary are separated by up to 0.02 arcsec when 0.08 AU from Earth
 - Marginally resolvable with ALMA (sub-mm), Magellan adaptive optics
- Post-impact brightening and ejecta stream as extended object ("coma") may be observable from Earth

Basalt C2 WCB C3 PS C8 S	FA C7
Didymos brightening (mag) -0.08 -0.02 -0.38 - Coma, integrated V mag 17.3 18.8 15.5 -	-0.12 16.8

P/2013 P5 ~250 m, observed at 1.1 AU Earth distance

Cheng, Michel et al. (2016) PSS 121:27

Modeling the Impact, Inferring Surface Physical Properties

Scaling relations and numerical simulations model the hypervelocity impact

- DART measurement of deflection without AIM constrains β and yields qualitative inferences of target properties
- With AIM, precise measurements of β and crater size better separate porosity and strength effects
- AIDA has additional handles on the scaling parameter µ
- Estimation from ejecta velocity distribution and from observing the ejecta distributions over time
- If crater growth can be observed, determine μ

SCI on Hayabusa 2

SCI ON AIM?

- DART: 529 kg at 5.92 km/s
- SCI: 2 kg at 2 km/s

• Two different impact velocities would allow us to much better constrain the µ scaling law parameter

Fig. 6. Momentum multiplication factor $\beta - 1$ as a function of impact velocity using target structure (a) and considering various strengths and porosities. Unless indicated, the nominal values for Y_t and P_e , P_s are used (see Table 1). The result of an impact experiment using a pumice target (Housen and Holsapple, 2012) is also shown.

From Jutzi & Michel 2014

The set of th

AIDA INVESTIGATION TEAM

AIDA INVESTIGATION TEAM

W1 Modelling and simulation of impact outcomes

(A. Stickle/JHU-APL, P. Miller/LLNL, R Schwartz/OCA)

W2 Remote sensing observations

(A. Rivkin/JHU-APL, P. Pravec/Ondrejov Obs.)

W3 Dynamical and physical properties of Didymos

(D. Richardson/Univ. Maryland, K. Tsiganis/Univ. Thessaloniki, A. Bagatin/Univ. Alicante)

W4 Science proximity operation

(S. Ulamec/DLR, O. Barnouin/JHU-APL)

= !! 🛌 :: = + !! = 🔚 := 1! !! = = :: :: 🖬 🛶 🚺 !! = :: :: :: :: :: :: ::

Working Group 1 (Chairs: Stickle A., Miller P., Schwartz S.R.)

ICV

Modelling and simulation of impact outcomes

Name	Affiliation	Name	e Affiliation		Affiliation	
Erik Asphaug	ASU	Kevin Housen	Boeing	Gonzalo Tancrodi	Fisica	
Julie Bellerose	JPL			Gunzalo Tancieul	FISICa	
Olivier S. Barnouin	JHU-APL	Daniel S. Jontof-Hutter	PSU	Keomenis Tsiganix	AUTH	
		Robert Luther	MfN			
Megan Bruck-Syal	LLNL	Paul Miller	LLNL	Jean-Baptiste Vincent	MPS, MPG	
Andrew Cheng	JHU-APL	Patrick Michel	OCA	Kai Wünnemann	MfN, Leibniz	
Steve Chesley	JPL	Naor Movshovitz	UCSC	Yang Yu	OCA	
Gareth Collins	Imperial College	Nilda Oklay	MPS, MPG	00 h 06 min 00 h 51 min	01 h 19 mln	
Dan Durda	SWRI	J. Michael Owen	LLNL			
Charles El-Mir	JHU	Cathy Plesko	LANL		Ne.	
Carolyn M. Ernst	JHU-APL	Mark Price	University of Kent	02 h 44 min 05 h 34 min	1 day	
Eugene Fahnestock	JPL	Emma S. G. Rainey	JHU-APL			
Galen Gisler	LANL	K.T. Ramesh	JHU	2 day 6 day	14 day	
Nicole Güldemeister	MfN	Jim Richardson	Arecibo			
		Eileen Ryan	NMT			
Douglas Hamilton	UMD	Peter H. Schultz	Brown			
Keith Holsapple	UW				European Space Age	

Working Group 2 (Chairs: Pravec P., Rivkin A.) Remote sensing observations

Name	Affiliation
Paul Abell	NASA
A. Campo Bagatin	U. Alicante
Lance Benner	NASA/JPL
Michael Busch	UCLA
Humberto Campins	UCF
Andy Cheng	APL
Steve Chesley	JPL
Julia De Leon	IAC
Marco Delbo	OCA
Elisabetta Dotto	INAF
Emily Kramer	UCF
Matthew Knight	U Maryland
Jian-Yang Li	U Arizona
Javier Licandro	IAC
Tim Lister	LCOGT
Colin Snodgrass	Open U

Name	Affiliation
Amy Mainzer	NASA/JPL
Patrick Michel	A30
Nick Moskovitz	Lowell Obs
Shantanu Naidu	UCLA
Michael Nolan	
Dave Osip	
Dagmara Oskiewicz	
David Polishook	
Petr Pravec	
Derek Richardson	
Andy Rivkin	
Elieen Ryan	
William Ryan	
Petr Scheirich	
Amanda Sickafoose	
Emmanuel Jehin	FNRS

The set of th

Working Group 3 (Chairs: Campo Bagatin A., Richardson D.C., Tsiganis M.)

Dynamical and physical properties of Didymos

Name	Affiliation	Name Affiliation				
Asphaug	ASU	Jacobson	U. Nice/OCA	Name	Affiliation	
Barbee	NASA/GSFC	Mardling	Monash U	Sarid	UCF	
Barnouin	JHU/APL	Maurel	ISAE-SUPAERO	Scheeres	U. Colorado	
Bellerose			IGAL-GOT ALICO	Scheirich	AICAS	
Dellet03e		McMahon	U. Colorado	Schwartz	U. Nice/OCA	
Benner	NASA/JPL	Michel	U. Nice/OCA	Siegfried	IMCCE	
Biele	DLR	Formanda		Tancredi	Ciencias	
Bottke	SwRI/Boulder	Fernando	IAA	Tanga		
Campo Bagatin	U Alicante	Murdoch	ISAE-SUPAERO	Tardivel	NASA/JPL	
Cheng	JHU/APL	Naidu	NASA/JPL	Tsiganis	Aristotle U/Th	
Cheslev	NASA/JPL	Penttilä	U. Helsinki	Vincent	MPS	
Fahnestock	NASA/JPL	Pravec	AICAS	Vovatzis	Aristotle U/Th	
Hamilton		Richardson	U. Maryland	Walsh	SwPI Boudlor	
		Rivkin	JHU/APL	VValsti		
Hartzell	U. Maryland	Rosenblatt	OMA	Yu	U. Nice/OCA	
Hestroffer	Obs. Paris	Rossi	IFAC-CNR	Zhang	U. Maryland	
Hirabayashi	Purdue	Sánchez	U. Colorado	₩ •	European Space Ag	enc

Working Group 4 (Chairs: Barnouin O., Ulamec S.)

Proximity operations

Name	Affiliation	
Olivier Barnouin	JHU/APL	
Stephan Ulamec	DLR	
Michael Kueppers	ESA	
Jean-Baptist Vincent	OCA	
Alain Herique	IPAG	
Valerie Ciarletti	U. Versailles	Proximity
Simon Green	Open Univ.	operations May 2022
Bjoern Grieger	ESA	
Andy Rivkin	JHU/APL	May
Andy Cheng	JHU/APL	2022
Kieran Carroll	GEDEX	

BUILDING ON STRONG EUROPEAN HERITAGE

TO DATE: 40+ companies/R&D 15 Member States CSA

OBSERVATOIRE DE LA COTE DAZUR OCA **DLR - German Aerospace Center**

UNIV JOSEPH FOURIER GRENOBLE QINETIQ SPACE NV

GMV AEROSPACE AND DEFENCE. SA OHB SYSTEM AG **SPINWORKS** POLITECNICO DI MILANO

TELESPAZIO VEGA DEUTSCHLAND GMBH

CNRS - DELEGATION ALPES - INSTITUT

RUAG SCHWEIZ AG, RUAG SPACE **KAYSER ITALIA** INST ASTROFISICA CANARIAS Gooch & Housego Ltd AXCON APS VTT TECHNICAL RESEARCH CENTRE OF **FINLAND LTD** UNIVERSITY OF HELSINKI

MICOS ENGINEERING GMBH **OBSERVATOIRE ROYAL** INSTITUT SUPERIEUR AERO ET ESPACE Antwerp Space N.V. EMBEDDED INSTRUMENTS AND SYSTEMS SL ASTEROID INITIATIVES LLC SWEDISH INST SPACE PHYSICS CSIC-IEEC HBM-BENELUX AAC MICROTEC ABFORMERLY ASTC **ARIANESPACE** SPACE EXPLORATION INSTITUTE (SPACE-ISIS-INNOVATIVE SOLUTIONS IN SPACE INSTITUTE OF SPACE SCIENCE - ISS (INFLPR) Space Science and Technology SPACE RESEARCH CENTRE POLISH ACADEMOF SCIENCES ASTRONIKA SP. Z O.O. COSINE RESEARCH BV GMV INNOVATING SOLUTIONS SRL

GMVIS SKYSOFT S.A.

DTU

University of Bologna

×

+

0

-

+-

European Space Agency

2016

PRR

K0+9

12 - 29 Jan

QinetiQ

Prime Contractor

gm∕

Sub-contractor

ESOC ESTEC

PHASE-B1

ISRR

PRR+6

ESTEC

11 July - 13

Sept

PM4

PRR+3

8 & 11 April

PHASE-A

Science workshop (90+

PM3/OMC

K0+6

ESAC

21 & 22 Sept

PM₂

KO+4

3 & 6 July

Industry days (100+ attendees,

Spin.works

Spin.Works

attendees)

2015

KO

ESTEC

19 March

colocation

POLITECNICO

Sub-contractor

colocation

PM1

K0+2

8 & 13 May

Operations/Spacecraft

Payload/Spacecraft

IOV/IOD)

OHB

Prime Contractor

Prelespazio

Sub-contractor

→ ENABLING APPROACH

 Preliminary feasibility confirmed

→ ENABLING APPROACH

- Cost and schedule driven
- Platform and payload "integrated" teams
- Early OPS and FDyn teams support (Rosetta)
- Early GNC testing and validation in lab
- Reuse of flight spares (e.g. DAWN framing camera)

· = ■ ► = = + ■ = ≔ = = 1 ■ ■ ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ₩

AIM PROJECT PREPARATION

esa

AIM SCHEDULE & STATUS

$\rightarrow NFXT$		2015	2016	2017		2018	2019	2020	2021
STEPS	AIM project	Q1 Q2 Q3 Q4 Q1	Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2
 ITT Consolidation Phase published (4.5M€) Spacecraft design consolidation Team organization Consolidation of CaC and implementation plan 	Milestones (start) PRR iSRR SRR PDR CDR FAR LAUNCH	▲ 12/	CM ² 1 13/07	€ ◆27/03	◆ 9/1	0	CM1	9	16/10
Part 1 (750k€) supported by: Germany Belgium Spain Portugal Romania Poland	Phase A Phase B1 Consolidation Phase B2 Advanced C/D Phase C Phase D Contingency Launch campaign	B	1 Cons	B2	/C	c	D		

AN OPPORTUNITY

Fast "return on investments", 2 years from launch (Ariane 6.2) Asteroid operations: 6 months, favourable to constraint cost Demonstrate new platform-payload-operations teams integrated approach for faster implementation

New technology "firsts" applicable to future missions based on activities already funded in ESA: laser comm, on-board autonomy, cubesats, advanced GNC, intersatellite comm and metrology, distributed systems New industries to demonstrate capabilities in deep-space

Answer fundamental questions on Solar System formation Understand impact dynamics beyond laboratory scale Probe the interior structure of small bodies (first time) Provide "ground-truth" for observations (radar, optical, meteorites)

SCIENCE

Addressing planetary defence objectives

Public engagement and outreach similar or even beyond Rosetta Opportunity to provide visibility to space programmes at large Opportunity to enhance governments support in space activities

INSPICE ON AND OUTREACH (416.000 results on Google for "as

1 💻 🚞 📲

European Space Agency

esa

AIM in the context of future planetary missions

- AIM will be the first ESA mission to a small body () since 2004 launch of Rosetta and the only opportunity in the next 20 years
- Benefit from the wealth of expertise and experience of Rosetta, in particular for close-prox operations and deployment of the first lander since Philae
- ✤ Operations in low gravity environment relevant to e.g. Phobos-SR
- + COPINS operations relevant for Mars sample return architecture (canister)
- Communications technologies enabling future missions with high-data volumes (e.g. human exploration, L-observatories, deep-space data relays)
- Platform concept applicable to deep-space missions (e.g. Space Weather)

European Space Agency

Conclusions

- AIDA will combine US and European space experience and expertise to address an international challenge, the asteroid impact hazard (planetary defense)
 - AIDA is the first well documented impact experiment at asteroid scale
- AIDA will return **fundamental new science data on an asteroid's surface properties, internal structure, strength, with great implications in Solar System science**
- AIDA is a high-value-return innovative, international, low-cost small satellite mission with high potential for public interests
- AIM is the **only European opportunity** for a small body mission, addressing high level scientific questions within the next 15-20 years.

For more information www.oca.eu/michel/AIDA/ www.esa.int/AIM

European Space Agency

One of the most productive deep space satellite mission I've ever heard of!!

Can't wait for it!

Another mission done ESA-style with absolute bravery and kick-ass methodology... I love it!

Just technology porn!

that is just cool as hell

www.esa.int/AIM

This mission looks amazing. Pushing the boundaries in so many ways.

European Space Agency