火星の表層環境・気候の進化 の解明

ポテトチーム ~ 火星 de かき氷 ~

大熊成裕 芝池諭人 小澤祐亮 宮田洋佑

- 1. ミッション定義
- 2. ミッション要求
- 3. システム要求
- 4. システム配分
- 5. システム設計
- 6. 結論

1. ミッション定義

1-1. トップ目標 火星の現在と過去の生命居住可能性の解明

1-2. 探査の目的 火星の極冠を調べて、火星の表層環境・気候の進化を理解する

1-3.貢献(アウトカム) 極冠の氷層の性質を理解し、

- 関連する火星固有の惑星科学を解明する。
- 有人探査に向けた火星移住への情報を収集する
- 地球の惑星科学や、地球温暖化問題などへ応用する

ミッション要求
 ミッション定義からのブレイクダウン
 1.1 探査場所

North Polar Layered Deposits

- ・ 北極(夏が白夜、冬が極夜)
- 差し渡し約1000kmのH2O氷
- 毎年収縮を繰り返す
- 冬にはCO2雪が1.5-2m積もる

(Smith et al. 2016)

SHARAD (Shallow Rader)による観測:北極氷の層状構造

- 積層と浸食の繰り返し
 を記録した、層状の氷
- 400万年ほどかけて形成
- 37万年前は前回の氷河 期の終わり

(Smith et al. 2016)

2. ミッション要求

2.1 ミッション定義からのブレイクダウン 2.1.2 具体的な観測対象とそこから得られる情報

- 氷床(H2O, CO2)の組成比・同位体比
 - CO2存在比 → 各年代での表層にあったCO2の大気量や循環への制約
 - Oの同位体比 →
 - 1. 温度の推定
 - 2. 火星隕石と現在の火星の酸素同位体比のズレへの示唆
 - Cの同位体比 → 生命存在の証拠
 - N2, Ar の存在量 → 生命を構成する元素などの存在量
- 氷に含まれているダストの種類(形状、組成)、年代
 - 各年代の表層環境への示唆(地表面の岩石種、海の有無、風の強さ、火山)
 - ダスト含有気体の組成 → 大気量、組成への示唆
 - 有機物の有無
- 現在の大気諸元・CO2雪
 - ・ 現在の表層環境
 - 降雪の仕組み

2. ミッション要求

2.2 ミッションサクセスクライテリア

> フルサクセス:

北極氷床中のCO2の存在比、Oの同位体比、観測位置を調べることで、 同じ氷期サイクル内の年代と気温が推定可能なデータを複数箇所得る

No	項目	条件	根拠
1	探査場所	北極の斜面	様々な年代の観測が可能
2	探査範囲	2km以上	後述
3	サンプリング箇	80m間隔で25点以上	後述
	所	地表(H2O氷)面下 100mm	H2O氷床の成長速度が1mm/年 → 十分な厚さ
4	サンプリング対	H2O氷	前述
	象	閉じ込められたCO2	前述
5	サンプリング量	1g	O同位体比の測定に必要 (他の測定値への制約は今後の課 題)
6	探査期間	夏(半年)	火星の新雪が無い期間
7	観測データ取り 扱い	すべての取得データ を地球に送信可能	すべての取得データを解析・分析す るために必要

2. ミッション要求
 2.2 ミッションサクセスクライテリア

————目標精度————

• 年代の間隔:1.5万年

火星の気候変動に影響を与える火星の日射量変化の周期:7万年(伊藤 2004)

→ 周期を分解可能:1.5万年

年代の期間:37万年

前回の氷河期の終わり:37万年前(モデルに依存する)

———— 計測精度 —————

・ 最小移動距離:2km
 氷期37万年の層が斜面約2kmに相当

- サンプリング間隔:約80m間隔
 約7万年の周期→約1.5万年ごとで判別可能
 氷期37万年の層が斜面約2kmに相当→1.5万年の層が水平80m相当
- サンプリング回数:25回

2. ミッション要求
 2.2 ミッションサクセスクライテリア
 > エクストラサクセス:

- 1. 北極氷床中のCO2の存在比、Oの同位体比、観測位置を調べることで、別氷期サイクル内の年代と気温が推定可能なデータを得る
- 1. フルサクセスに必要な機器で可能な他の測定
- ・ 質量分析計を使った、N2など(リン、硫黄)など生命を構成する
 元素の存在量
- ・ 質量分析計(orレーザースペクトロメター)を用いたCの同位体比 (H2O氷サンプラーによるCO2氷のサンプリング)
- ランダーのカメラによる初雪観測(最高解像度1.5mm、探査機が秋 ~冬まで保った場合)
- (質量分析系を使った、宇宙塵を構成する元素の存在量)
- オプション:新たに計測機器を追加搭載して可能になる他の測定
- ガスクロマトグラフィーを用いた有機物量の測定
- X線回折によるダストの測定

3. システム要求 ミッション要求を受け、システム要求を以下表に整理した。

N o	項目	条件		No	システム要求
1	探査場所	北極の斜面	>	A	北極目標地点に10km×10km精度で軟着陸 可能な機能を持つ
2	探査範囲	2km以上	\rightarrow	В	探査機が2km以上の探査が可能である
3	サンプリング 笠毛	80m間隔で25点以上		С	左記を観測可能なミッション機器を搭載
	」 固 PT 	地表(H2O氷) 西下100mm		D	探査箇所が同定可能であること
1	<u></u>			E	多点観測が可能である
4	ッシンウンウ 対象	H2O示 閉じ込められたCO2		F	探査機が氷を掘ることが可能なサンプラを 有する
5	サンプリング 量	1g		G	探査機の寿命が北極において火星年半年で ある
6	探査期間	夏(半年)	$ \rightarrow $	Н	夏に着陸する
7	観測データ取 り扱い	すべての取得データを地 球に送信可能		I	ミッションデータを探査機が地上システム へ送信可能である

3. システム要求 3.1 観測のために必要なミッション機器

No	項目	質量	用途
1	QMS(レーザー込み)	7kg	O同位体比の測定
2	LIBS(QMSのレーザー 使用)	3kg	CO2の存在量の測定
3	サンプラー(ドリル・マ ニュピレーター・サンプ ル容器)	5kg	 サンプル(氷)を掘り出し取得する 掘り出したサンプルをローバー本体 に移動する
4	サンプル ハンドリング機構	5kg	サンプル、サンプル容器、ドリルを取り 替える
	合計	20kg	

4. システム配分

<u>(前提)</u>

- ▶ 打ち上げロケット: H2-A 202型
- ▶ 打ち上げ能力:4000kg以内(GTO投入前提)

(探査機の主な機能配分)

□ 着陸機

- 1. 地球~火星への航行
- 2. 月面への軟着陸
- 3. ローバと地上システムの通信中継
- 4. ローバの相対位置航法
- (着陸機の位置を基準に火星上の進んだ距離)

ロローバ

- 1. 氷層を広く(2km以上)探査
- 2. サンプルを採取する
- 3. サンプルの観測データを着陸機/地上へ送信

(質量配分)

▶ 探査機(WET):2200 kg

No		質量配分項目	kg	仮定
1	キックモー	ックモータ(GTOから火星までの必要推薬量)		・Mars Pasthfinderでの必要推薬量と同じと仮定 (探査機総質量が近いので、仮定は妥当)
		a.地球~火星までの航行に必要なバス機器 (SAP, 推進, 構造, アンテナ, 熱・計装等)	230	・火星探査機のぞみのバス部重量230kgを想定すれば十分より
•		b.カプセル+火星突入から着陸までに必要な推薬量	570	・Mars Pasthfinderの実績:570kgより
2	 宿陸機	d.着陸機に必要なバス機器 (aとは別のSAP,推進,構造,アンテナ,熱・計装等 +着陸脚,姿勢制御系,着陸誘導系,OBC,電源系, 通信系)	200	・Mars Pasthfinderの実績: 200kgより
3	ローバ		200	・総質量をミッション機器の10倍と仮定(MSLの実績) ・ミッション機器をQMS:7kg, レーザスペクトロメータ:3kg, サン プラー:5kg, サンプルハンドリング機構:5kgの合計20 kgと仮定
4	総計		2200	

5. システム設計 評価基準 5.1 コンフィグレーション検討 5.1.1 探査機構成(1/2)

- ◎(2点):他と比べて一番良い
- (1点):他に良い候補があるが十分実現可能である。
- △(0点):劣っている部分が多いが実現不可能ではない
- ×(-1点):一番劣っている、もしくは、実現が難しい

ローバと着陸機の組み合わせ、及び、周回機の有無についてトレードオフを実施し、 「着陸機+ローバ型の周回機無し」のコンフィグレーションとした。

着陸機+ローバ 項目 着陸機 多数 ローバのみ 着陸機能と表面走行機能を分離 多數の着陸機を用意する ローバに着陸機構を設ける 概要 着陸時 走行時 ローバ1機で良いため、一番軽 重量 「ローバのみ」より劣るが、現 × 探査箇所が多いため、重量が \bigcirc ()実可能である 莫大になる い 開発費 2機分の費用が必要であるが. × 探査機が多く必要なため、費 ◎ バス機器が共通に出来て、コ ()設計次第で実現可能 用も莫大になる。 ストが一番低い 設計制約 着陸機とローバ個々で設計可能 \bigcirc クリティカルなものは無い △ 軌道上と惑星上で各サブシステ \bigcirc なため制約条件は少ない ムを共通設計にする必要があり、 制約条件が多い。 ◎ 多くの実績あり、SLIMの着 左と同様 △ 新規開発要素(新機構や共通設) 実績 \bigcirc 計思想)が多く、実績が無い 陸・ローバ展開システム技術を使用 可能 1点 4点 総合点数 6点

着陸機とローバの組み合わせトレードオフ

5. システム設計 5.1 コンフィグレーション検討 5.1.1 探査機構成(2/2)

評価基準

- ◎ (2点):他と比べて一番良い
- (1点):他に良い候補があるが十分実現可能である。
- △(0点):劣っている部分が多いが実現不可能ではない
- ×(-1点):一番劣っている、もしくは、実現が難しい

周回機の有無 トレードオフ

項目	周回機無し	周回機有り
概要	火星上の探査機のみで探査	火星上の探査機と協調探査可能
質量	◎ 周回機1機分の質量が削減可能であり、ミッション系や冗長系に配分可能	△ 周回機1機分重い
可視	○ 右よりも可視は少ないが、地上シ ステムの個数と運用で大きな問題無し	◎ 周回機を中継することで可視時間・ 回数が多い
航法	◎ 着陸時の絶対航法と移動中の相対 航法を組み合わせることで、十分シス テム要求の位置同定可能	◎ 周回機との電波航法で地上システム の位置同定が可能
開発費	 周回機分の開発費が削減可能 	△ 周回機1機分の開発費必要
総合点数	7点	4点

5. システム設計 5.1 コンフィグレーション検討 5.1.2 着陸機(1/3)

<u>着陸機システムへの要求整理</u>

N o	システム要求項目	適 用	着陸機システムでの設計 (サブシステムへの影響)
A	北極 <u>目標地点</u> に <u>10km×10km精度</u> で <u>軟着陸</u> 可能な機能を持つ こと	\bigcirc	 (姿勢制御系): ・火星まで:スピン安定制御 ・火星エントリ直前:3軸姿勢制御 (着陸航法誘導制御系) :・SLIMと同程度の航法誘導センサ及び制御システムを搭載 (構造系) :・SLIMと同様の着陸脚型 ・エントリカプセル(主構造)を搭載 ・パラシュートを搭載
В	探査機が2km以上の探査が可能である こと	_	_
С	ミッション観測対象を観測可能なミ ッション機器を搭載のこと	-	
D	探査箇所が同定可能であ ること	\bigcirc	(ローバ航法誘導系) ・着陸機の絶対航法とローバの相対航法を組み合わせた同定方法を採用
Е	多点観測が可能であること	_	-
F	探査機が氷を掘るサンプラを有する こと	_	
G	探査機の寿命が北極にお いて火星年半年であるこ と	0	(太陽電池パドル系) ・パドルを鉛直横向きに倒し,太陽方向を追従するパドル機構システムを採用 (熱制御系) ・着陸脚と本体をFRP素材で伝導断熱し,本体の下面はMLIで輻射断熱する方式を採 用
Н	夏に着陸可能のこと	\bigcirc	(軌道制御系) ・のぞみ同等の化学推進系を使用し,夏に着陸可能な打ち上げウィンドウを設定
Ι	ミッションデータを探査 機が地上システムへ送信 可能であること	\bigcirc	(通信系) ・多数実績のあるミッションデータをXバンド,HKデータをSバンド通信方式とし, 着陸姿勢に依存しないように回転機構を採用。
J	氷のままサンプル採取可能である	_	

5. システム設計 5.1 コンフィグレーション検討 5.1.2 着陸機 (2/3) 着陸シナリオを下図に示す。

5. システム設計 5.1 コンフィグレーション検討 5.1.3 ローバー(1/6)

<u>ローバシステムへの要求整理</u>

N o	システム要求項目	適 用	ローバシステムでの設計 (サブシステムへの影響)
Α	北極 <u>目標地点に10km×10km精度</u> で <u>軟着陸</u> 可能な機能を持つこと	-	
В	探査機が2km以上の探査 が可能であること	\bigcirc	(移動機構系) ・トレードオフの結果,クローラ型を採用
С	ミッション観測対象を観 測可能なミッション機器 を搭載のこと	\bigcirc	(ミッション系) ・要求ミッション機器を搭載する。
D	探査箇所が同定可能であ ること	\bigcirc	(ローバ航法誘導系) ・着陸機の絶対航法とローバの相対航法を組み合わせた同定方法とする。
Е	多点観測が可能であるこ と	\bigcirc	(移動機構系)・Bと同様
F	探査機が氷を掘るサンプ ラを有すること	0	(サンプラー) ・表面から100mm下の氷を溶かさずに採取可能なパイプ型ドリルを搭載
G	探査機の寿命が北極にお いて火星年半年であるこ と	0	(太陽電池パドル系) ・パドルを鉛直横向きに倒し、太陽方向を追従するパドル機構システムとする。 (熱制御系) ・車輪と本体をFRP素材で伝導断熱し、本体の下面はMLIで輻射断熱する。
Н	夏に着陸可能のこと	—	—
Ι	ミッションデータを探査 機が地上システムへ送信 可能であること	0	(通信系) ・多数実績のあるミッションデータをXバンド,HKデータをSバンド通信とする。
J	氷のままサンプル採取可 能である	\bigcirc	(サンプラー) ・表面から100mm下の氷を溶かさずに採取可能なパイプ型ドリルを搭載

5. システム設計 5.1 コンフィグレーション検討 5.1.3 ローバー(2/6)

評価基準

- ◎(2点):他と比べて一番良い
- ○(1点):他に良い候補があるが十分実現可能である。
- △(0点):劣っている部分が多いが実現不可能ではない
- ×(-1点):一番劣っている、もしくは、実現が難しい

<u>移動機構トレードオフ</u>

項目	車輪型	クローラ型	多脚型
走破性	△ スリップが多い × 斜面が登れないリスク 高	◎ 走破性が高い(地球上で の氷上実績あり)	◎ 走破性が良い
質量	◎ 重くなり	△ 構成が複雑で重い	△ アクチュエータ数が多く重い
速度	△ 氷の上では不明	◎ 惑星ローバの移動速度は 氷上でも実現可能性高	△ 作動に時間がかかる
寿命	◎ 長い	○ 車輪ほどは長くない	△ アクチュエータ作動回数が多 く故障リスク高
総合点数	3 点	5点	2点

<u>サンプラートレードオフ</u>

項目	先端鋭角型	ホール型	融解型
電力	◎ 特に問題ではない	◎ 特に問題ではない	△ ヒーター熱に非常に電力を使 用
実績	○ 案は存在する	◎ 地球上の北極であり	○ 案は存在する
寿命	△ 30か所以上取るので, 先端が摩耗する恐れあり		△ 自身も熱くなるので電子機器 の温度環境が激しい
サンプル	図 要求通り採取可能	図 要求通り採取可能	× CO2が採取できない
総合点数	5 点	8点	1点

5. システム設計
5.1 コンフィグレーション検討
5.1.3 ローバー(3/6)
下表に、ドリルについてトレードオフした。

評価基準

○(1点):優 ×(0点):劣

	<u>ドリルトレー</u>	<u>ドオフ</u>
項目	マニュピュレータ型	直下型
逆トルクへの反重	^カ ×アームの耐久力に依存するので、頑丈 なアームが必要	○車体の重心に近いので、安定
破片の散乱	〇車体からある程度距離があるので安定	×車体下部に直撃する可能性がある
移動中の機器保管	う 〇車体上部は障害物の影響を受けないの で安全	×斜面の凹凸に依存する
採集の自由度	〇車体の移動可能範囲よりも広範囲で自 由度が高い	×車体の侵入可能な領域に限られる
重量	×アームの分重量がある	●パイプドリル分だけに限られる
機構の開発/	〇多くのローバで実績がある	x 完全に新規
操作の簡易性	×関節が多く複雑	●必要なのはサンプルと観測機の インタフェース部分に限られる
点数	4点	3点

5. システム設計
5.1 コンフィグレーション検討
5.1.3 ローバー(6/6)
マニピュレータはサンプラとは分離可能で、
有事の際は下図のように分離して探査を継続する。

5. システム設計
 5.1 コンフィグレーション検討
 5.1.4 ミッションシナリオ

5. **システム**設計 5.2 リスク分析

											4:2度以上			
											3:1度実績	3:ミッション続行不可		
開発課題											2:実績なしだが,推進・可動部	2:フルサクセス実行不可		
											1:実績なしで上記以外	1:フル実行可能, バックアップ必要		
フェーズ	電源	熱 制 御	姿勢	推進	航法誘導	通信	機構	Mis sio n	, 外 的	リスク内容	発生可能性:P	影響度:	新規開発要素 penalty	リスクスコア : P*I+S
惑星間遷移時			0		0	0				D2F		4	3	12
										ロケットの航法誘導不良によりノミナルの軌道に 乗れない		2		2
MOI時					0	0				軌道決定精度不良によるMOI失敗	4	4	ł	4
			0	0	0	0				MOI用個体モータ精度不良によるMOI失敗		4	1	4
				0						MOI用固体モータの故障によるMOI失敗		3	\$	9
					0	0			0	不可視領域侵入中の通信不可によるロスト		1 :	3	3
周回軌道上待 機時	0	0	0	0	0	0		0		待機時間が長くなることによる、機器の故障		3	1	3
着陸機投入		0			0	0				投入角度が悪くて,目的地の誤差楕円内に落ち れない		1	2 5	7
		0			0	0				投入角度が悪くて,必要以上の空力加熱を受け, 崩壊		3	3 5	14
							0			パラシュートが開かない		3	3	9
							0			カプセルが開かない		1 :	3	3
							0			振動によって,機器が壊れる		1 2	2	2
					0					着陸場所の光学環境が悪く, 航法カメラでの撮像ができない		1	1 5	6
着陸機着陸					0				0	傾斜がきついところに、着陸してしまう		1 .	5	6
			0							着陸機のRCSの動作不良		1	5	6
					0				0	着陸位置の地面が良くない		1	1	1
ローバ発進							0		0	着陸機のローバ展開機構が開かない		1	2 5	7
ローバ移動					0		0		0	表面が柔らかく, 沈み込み		1;	5 5	8
					0		0		0	表面が柔らかく, スタック		1 :	5 5	8
					0		0		0	表面の摩擦係数が小さく, スリップ		1	5	6
サンプリング中							0	0	0	氷の表面が硬く、削れない		12	25	7
	0							0	0	太陽光の人射重が予想より小さく, 電源が足り ない			5	6
	0					0			0	CO2の雪が降りだし、アンテナSAPの効率が悪 くなる			5	6
		0					0	0	0	マニピュレータの関節が凍り付く		1 .	5	6
		0					0	0	0	ローバのキャタピラが地面に凍り付く		1	5	6

6. 結論

6-1. トップ目標 火星の現在と過去の生命居住可能性の解明

6-2. 科学的な目的 火星の極冠を調べて、火星の表層環境・気候の進化を理解する

6-3. 工学的実現可能性 システム設計の結果、本探査ミッションの実現が可能であることを概ね 確認できた

6-4.貢献(アウトカム) 本探査ミッションにより以下が期待される

- 関連する火星固有の惑星科学の解明
- 有人探査に向けた火星移住への情報の収集
- 地球の惑星科学や、地球温暖化問題などへの応用

終わり