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Day 1 — Fundamental concepts

Part | — Energy budget: sources of energy and
their relative importance during planetary
evolution

Part Il — Thermal evolution of asteroids

Part Ill — Thermal evolution of planets
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Part lll — Thermal evolution of planets

3.1 Magma oceans

3.2 Long—term evolution
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Part 4. — Thermal evolution of planets
Magma oceans

26A] + 60F ¢

+

Accretion Energy

Magma ocean are inescapable for (large planets)
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Planetesimals

Both differentiated
and undifferentiated

Radii are tens to
hundreds of kilometers

Accrete in ~10° years

May have'internal magma oceans

3.1 - Magma oceans

Planets

Differentiated

Accrete in tens to
hundreds of million years

Embryos May have surface magma ponds

Differentiated or oceans and may have a magma layer
at depth from potential'energy of
differentiation, density inversion

during solidifications, or radiogenic heat

Radii are thousands
of kilometers

May have surface magma ponds
or oceans from impacts

Elkins—Tanton 2012 — Annual Review of Earth and Planetary Science
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3.1 — Magma oceans

The temperature profile in a magma ocean is given by
the adiabatic gradient

oT go,T

9z Js Cp

The adiabatic temperature profile (T, = f(P)) is usually
steeper than the solidus temperature profile.

This has a fundamental implication on the magma
ocean structure
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Depth (km)

3.1 - Magma oceans

Example in the case of the Moon

Moon
0 . ——0
100 405
200} ~1.0
300 | S L
- Q
z
o
o .
wn
400 | E__ 2.0
i [
3
<)
o |
7 500 - 1 1 1 2 5
1,200 1,400 1600 1,800

- Temperature (°C)

(edD) ainssaid

100% liquid

100

200

Depth (km)

300

8% 10% crystalline

500
Elkins—Tanton 2012 — Annual Review of Earth and Planetary Science

D. Baratoux — Kobe VUniv"ersit;/, 15t — 16t June 2016



The anorthositic crust of the Moon

Geophysical data (including Apollo seismic experiments) + Apollo samples indicate
that the upper crust of the moon is dominated by plagioclase

Nearside Farside

» Shallow Moonquakes
— Anorthositic crust

Partial melt zone
(lower mantle)

Deep moonquake
*. source region

Fluid outer core

Solid inner core

Middle mantle
\

N
? 560 km discontinuity

Upper mantle

“South Pole-Aitken:basin
Khan et al. 2013 — Tectonophysics
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The anorthositic crust of the Moon

Geophysical data (including Apollo seismic experiments) + Apollo samples

indicate that the upper crust of the moon is dominated
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The anorthositic crust of the Moon
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The surface of Mars — basalts
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Where is the floatation crust ?
Is there any remnants of the magma ocean ?
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The surface of Mercury

X-ray spectrometry during solar flares
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The surface of Mercury

Confirmation from gamma—ray spectrometer

Aluminum abundance on the surface of Mercury:
Application of a new background-reduction technique
for the analysis of gamma-ray spectroscopy data

Patrick N. Peplowski,l Edgar A. Rhodes,! David K. Hamara,” David J. Lawrence, '
Larry G. Evans,” Larry R. Nittler,* and Sean C. Solomon™*?

Received 2 July 2012; revised 24 September 2012; accepted 7 October 2012; published 7 December 2012.

[1] A new technique has been developed for characterizing gamma-ray emission

from a planetary surface in the presence of large background signals generated in a
spacecraft. This technique is applied to the analysis of Al gamma rays measured by the
MESSENGER Gamma-Ray Spectrometer to determine the abundance of Al on the surface
of Mercury. The result (AI/Si = 0.297%°%3) is consistent with Al/Si ratios derived from
the MESSENGER X-Ray Spectrometer and confirms the finding of low Al abundances.
|The measured abundance rules out a global, lunar-like feldspar-rich crustjand is consistent
with previously suggested analogs for surface material on Mercury, including terrestrial
komatiites, low-iron basalts, partial melts of CB chondrites, and partial melts of enstatite
chondrites. Additional applications of this technique include the measurement of other

elements on Mercury’s surface as well as the analysis of data from other planetary
gamma-ray spectrometer experiments.

Citation: Peplowski, P. N., E. A. Rhodes, D. K. Hamara, D. J. Lawrence, L. G. Evans, L. R. Nittler, and S. C. Solomon (2012),
Aluminum abundance on the surface of Mercury: Application of a new background-reduction technique for the analysis of
gamma-ray spectroscopy data, J. Geophys. Res., 117, EOOL10, do1:10.1029/2012JE004181.




The anorthositic crust on the Moon is
considered to be the best evidence for the
existence of magma oceans

But...

Mercury, Mars (and in fact, no other rocky
planet) have a flotation crust !

So---why there is no floatation crust on
Mars or Mercury ?
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Why there is no floatation crust
on Mars ?
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Depth (km)

Magma ocean evolution
The case of Mars
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Radius (km)

Magma ocean evolution
The case of Mars

Thermal
boundary layer
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Elkins—Tanton 2012 — Annual Review of Earth and Planetary Science
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Why there is no floatation crust
on Mars ?

1. Al has been sequestered in the garnet layer
2. Water abundance inhibits the crystallization of plagioclase

3. The crystallized magma ocean is unstable, and the overturn produces a
secondary crust.
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Depth [km]

0

Magma ocean evolution
The case of Mars

Whole-mantle magma ocean:

Before overturn
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Elkins—Tanton 2005 — JGR-Planets
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Radius [km]

Magma ocean evolution
The case of Mars

before overturn
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Elkins—Tanton 2005 — JGR—-Planets
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A primary crust formed during mantle overturn
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A wide range of possible scenario depending on the magma ocean depth that are
not necessarily incompatible with the Noachian crust composition
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Magma ocean evolution
The case of Mars

Magma ocean crystallization

\

Overturn — adiabatic decompression

\

Melting

N

Production of an olivine—
pyroxene “‘primary crust”
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Why there is no floatation crust
on Mercury ?

1. Al has been sequestered in the garnet layer ?
2. Water abundance inhibits the crystallization of plagioclase ?

3. The crystallized magma ocean is unstable, and the overturn produces a
secondary crust.
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Internal structure of
Mercury vs Mars
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Mercury has a large core, shallow mantle, and surface is poor
in Fe
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Why there is no floatation crust
on Mercury ?

1. Al has been sequestered in the garnet layer ?
No — mantle is not deep enough

2. Water abundance inhibits the crystallization of plagioclase ?
Mercury is not rich in volatiles

3. The crystallized magma ocean is unstable, and the overturn produces a

secondary crust.
Yes, possible, too.

4. But there is also another possible explanation.
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Internal structure of
Mercury vs Mars
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Radius (km)

Why there is no floatation crust on Mercury ?
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b Plagioclase cannot float in a Mercury magma ocean
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Magma oceans as a function of planet size
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Elkins—Tanton 2012 — Annual Review of Earth and Planetary Science
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Part 4. — Long—term thermal evolution
Our planet is cooling
22Th — “% Pb + 6*He +4e~ + 47, +42.7 MeV
UK Y Ca+t e + v, TR MeV

K ol 0 Ar 1 ve + 1.51 MeV
Bl — “°Pb + 8%He + 6¢ + 67, + 51.7 MeV

Heat production : 20 TW

Heat loss: 40 TW

|

The Earth is cooling
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The Urey ratio

Internal heat production within the entire Earth
divided by total surface heat flux.

Ur > 1: The Earth is heating up !
Ur < 1: The Earth is cooling down !

Present Ur value ~ 0.3
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The Urey ratio

1800 o I I
§ @ Non Arc Basalts
S @ Komatiites
~ 8
S
Mantle potential
temperature .. S
o
L’ =258
Qa 7
hs Ambient Mantle /.,’/
Korenaga (2008a,b) -7
1400 $H == =
_ ———Amblent Mant
Tp(° C) = 1463 + 12.74Mg0O — 2924/MgO | I Dg‘v,;‘f;,“(zof;‘; =
Proterozoic Archean

Age (Ga)
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Mantle Potential Temperature
How do we measure the temperature of the interior of the Earth ?

Adiabatic temperature gradient in a convecting mantle

For instance, at T = 1500 K
oT\ ga,T
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Mantle Potential Temperature
How do we measure the temperature of the interior of the Earth ?

Adiabatic temperature gradient in a convecting mantle
For instance, at T = 1500 K
oT go,T
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Mantle Potential Temperature
How do we measure the temperature of the interior of the Earth ?

Geophysical approach

Thickness of the elastic lithosphere — Measurement of the depth of an
isotherm

The gravitational field of a planet holds information on the surface and subsurface mass distribution
and the relationship be— tween the observed gravitational signal and the topography can be inverted
to infer densities and elastic parameters of the litho— sphere

Petrological approach

Conditions of partial melting of volcanic rocks exposed at the surface.

A complex problem — the surface composition of magmas depend on
— Composition of the mantle source
— Conditions of partial melting (integration of melts generated along a P-T path)
— History of magma ascent (fractional crystallization)

Numerical approach — Simulations

Numerical simulations of mantle convection
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The Urey ratio
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Herzberg et al. 2010 — Earth and Planetary Science Letters

Major issue — Mantle is chemically and thermally heterogeneous
How can we make sure that we measure an “ambient” mantle temperature ?

D. Baratoux — Kobe University, 15t = 16t June 2016



Can we decipher the thermal

evolution of another planet than the
Earth ?

How would this help us to
understand the thermal evolution of
our planet ?
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