Day 1 – Fundamental concepts

Part I – Energy budget: sources of energy and their relative importance during planetary evolution

Part II - Thermal evolution of asteroids

Part III – Thermal evolution of planets

Part II - Thermal evolution of asteroids

2.1 Thermal evolution from accretion energy

2.2 Thermal evolution from ²⁶Al

2.3 Application to the thermal evolution of the chondrites parent body

H-

Protoplanet at time t

Protoplanet at time t + dt

No heat transport Source of energy: accretion

 $\frac{GM(R)}{R} * 4\pi R^2 dR\rho = 4\pi R^2 dR\rho C_p (T - T_n) + 4\pi R^2 \sigma (T^4 - T_n^4) dt$

Accretion energy

$$\rho \frac{GM(R)}{R} \frac{dR}{dt} = \rho C_p (T - T_n) \frac{dR}{dt} + \sigma (T^4 - T_n^4)$$

$$\rho C_p \frac{dR}{dt} T + \sigma T^4 = \sigma T_n^4 + \frac{4}{3}\pi R^2 G \rho^2 \frac{dR}{dt} + \rho C_p T_n \frac{dR}{dt}$$

Terms function of T

Terms function of R

 $\rho C_p \frac{R_f}{t_{acc}} T + \sigma T_s^4 = \sigma T_n^4 + \frac{4}{3} \pi R_f^2 G \rho^2 \frac{R_f}{t_{acc}} + \frac{R_f}{t_{acc}} \rho C_p T_n$

Equation for T as a function of final radius R

May be solved graphically

2.1 – Thermal evolution of asteroids Accretion energy

Plots for $t_{acc} = 1$ Myr

2.1 – Thermal evolution of asteroids Accretion energy

 $\rho \frac{GM(R)}{R} \frac{dR}{dt} = \rho C_p (T - T_n) \frac{dR}{dt} + \sigma (T^4 - T_n^4)$

$$\rho C_p \frac{dR}{dt}T + \sigma T^4 = \sigma T_n^4 + \frac{4}{3}\pi R^2 G \rho^2 \frac{dR}{dt} + \rho C_p T_n \frac{dR}{dt}$$

Terms function of T

Terms function of R

 $\rho C_p \frac{R_f}{t_{acc}} T + \sigma T_s^4 = \sigma T_n^4 + \frac{4}{3} \pi R_f^2 G \rho^2 \frac{R_f}{t_{acc}} + \frac{R_f}{t_{acc}} \rho C_p T_n$

Equation for T as a function of final radius

Accretion time as a function of Final (surface temperature)

$$t_{acc}$$

 $= \frac{\frac{4}{3}\pi R_{f}^{3}G\rho^{2} - \rho C_{p}(T_{s} - T_{n})R_{f}}{\sigma(T_{s}^{4} - T_{n}^{4})}$

Accretion energy

Melting is possible if $R > R_{fmin}$ (final critical radius)

$$R_{fmin} = \sqrt{\frac{\rho C_p (T_s - T_n)}{\frac{4}{3}\pi G \rho^2}}$$

Accretion energy + heat transport

Ambient temperature T_n

Meteoritic Bombardment

Radiative loss σT^4

Protoplanet at time t

Protoplanet at time t + dt

Source of energy: accretion Instantaneous heat transport

 $\frac{GM(R)}{R} * 4\pi R^2 dR\rho = d(\frac{4}{3}\pi R^3 \rho C_p (T - T_n)) + 4\pi R^2 \sigma (T^4 - T_n^4) dt$

Accretion energy + heat transport

 $\frac{GM(R)}{R}\frac{dR}{dt}\rho = \rho C_p (T - T_n)\frac{dR}{dt} + \frac{1}{3}\rho R C_p \frac{dT}{dt} + \sigma (T^4 - T_n^4)$ $\rho C_p \frac{dR}{dt}T + \sigma T^4 + \frac{1}{3}\rho R C_p \frac{dT}{dt} = \sigma T_n^4 + \frac{4}{3}\pi R^2 G \rho^2 \frac{dR}{dt} + \rho C_p T_n \frac{dR}{dt}$

With a constant accretion rate:

$$\rho C_p \frac{R_f}{t_{acc}} T + \sigma T^4 + \frac{1}{3} \rho \frac{R_f}{t_{acc}} C_p \frac{dT}{dt} t = \sigma T_n^4 + \frac{4}{3} \pi G(\frac{R_f}{t_{acc}})^3 \rho^2 t^2 + \rho C_p T_n \frac{R_f}{t_{acc}}$$

Numerical resolution

Accretion = heating and cooling from the edges.

²⁶AI heating from inside and cooling at the edges

Thermal profiles are different

Energy conservation equation

$$\rho C_p \frac{\partial T}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (Kr^2 \frac{\partial T}{\partial r}) + A(r,t)$$

Source term (²⁶Al decay) A_0 (W/m³)

$$A(r,t) = A_0 e^{-\lambda t}$$

Analytical solution

$$T(r,t) = \frac{\kappa A_0}{K\lambda} e^{-\lambda t} \left[\frac{R\sin(r\sqrt{\lambda/\kappa})}{r\sin(R\sqrt{\lambda/\kappa})} - 1\right] + \frac{2R^3 A_0}{r\pi^3 K} \sum_{n=1}^{\infty} \frac{(-1)^n}{n*(n^2 - \frac{\lambda R^2}{\kappa\pi^2})} \sin\frac{n\pi r}{R} e^{-\frac{\kappa n^2 \pi^2 t}{R^2}}$$

D. Baratoux - Kobe University, 15th - 16th June 2016

Two important factors

(instantaneous accretion)

Date of accretion Canonical value t = $0 - \frac{26}{AI}/\frac{27}{AI} = 5*10^{-5}$

Controls the amount of available energy

Size

Controls the rate of energy loss (boundary condition T = Tn)

2.2 – Thermal evolution of small asteroids ²⁶Al energy – When does it melt ?

Available energy

2.2 – Thermal evolution of small asteroids ²⁶Al energy – When does it melt ?

D. Baratoux - Kobe University, 15th - 16th June 2016

2.2 – Thermal evolution of small asteroids ²⁶Al energy – The onion shell structure

3

5

6

Why H-Chondrites ?

Ordinary chondrites have experienced variable degrees of thermal metamorphism

Negative correlation exists between the Pb/Pb ages of phosphates and petrologic type => link between age and degree of metamorphism (T).

Furthermore, a smooth variation of these <u>ages</u> was found as a function of metallographic <u>cooling rates</u> obtained on the same samples

H-chondrites may belong to the same parent body. Onion-shell structure of the parent body.

Туре	Meteorite	Closure date (Ma)	ΔCAI ^a (Myr)	Temperature (K)	Minerals	System	Reference
H4			Contraction of the local division of the loc		and the second		Street Street
	Ste Marguerite	$\begin{array}{l} 4566.9\pm0.5^{b}\\ 4564.3\pm0.8^{b}\\ 4562.7\pm0.6\\ 4532\pm16\\ 4520\pm27^{c}\\ \end{array}$	$\begin{array}{c} 1.6 \pm 0.5 \\ 4.2 \pm 0.8 \\ 5.8 \pm 0.6 \\ 36.5 \pm 16 \\ 48.5 \pm 27 \end{array}$	$\begin{array}{c} 1075 \pm 50 \\ 1050 \pm 100 \\ 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Metal–Silicate Px–Ol Phosphates Oligo. Felds Opx-Mrl	Hf–W Pb–Pb Pb–Pb Ar–Ar ²⁴⁴ Pu	Kleine et al. (2008) Bouvier et al. (2007) Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
	Forest Vale	$\begin{array}{c} 4560.9 \pm 0.7 \\ 4522 \pm 8 \\ 4514 \pm 8^{\circ} \end{array}$	$\begin{array}{c} 7.6 \pm 0.7 \\ 46.5 \pm 8 \\ 54.5 \pm 8 \end{array}$	$\begin{array}{c} 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Phosphates Oligo. Felds Opx-Mrl	Pb–Pb Ar–Ar ²⁴⁴ Pu	Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
H5							
	Nadiabondi	$\begin{array}{c} 4558.9 \pm 2.3 \\ 4555.6 \pm 3.4 \\ 4505 \pm 10 \end{array}$	9.6 ± 0.5 12.9 ± 3.4 62.5 ± 10	$1050 \pm 100 \\ 750 \pm 50 \\ 550 \pm 20$	Px–Ol Phosphates Oligo. Felds	Pb–Pb Pb–Pb Ar–Ar	Bouvier et al. (2007) Göpel et al. (1994) Trieloff et al. (2003)
	Richardton	$\begin{array}{c} 4563.0 \pm 0.9 \\ 4562.7 \pm 1.7 \\ 4550.7 \pm 2.6 \\ 4495 \pm 11 \\ 4439 \pm 18^{\circ} \end{array}$	$5.5 \pm 0.9 \\ 5.8 \pm 1.7 \\ 17.8 \pm 2.6 \\ 73.5 \pm 11 \\ 134.5 \pm 10$	$\begin{array}{l} 1100 \pm 75 \\ 1050 \pm 100 \\ 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Metal–Silicate Chondrule Phosphates Oligo. Felds Opx–Mrl	Hf–W Pb–Pb Pb–Pb Ar–Ar ²⁴⁴ Pu	Kleine et al. (2008) Amelin et al. (2005) Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
	Allegan	$\begin{array}{c} 4550.2\pm 0.7\\ 4511\pm 11\\ 4460\pm 20^{\circ}\end{array}$	$\begin{array}{c} 18.3 \pm 0.7 \\ 57.5 \pm 11 \\ 108.5 \pm 20 \end{array}$	$\begin{array}{c} 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Phosphates Oligo. Felds Opx–Mrl	Pb–Pb Ar–Ar ²⁴⁴ Pu	Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
Ho	Kernouvé	$\begin{array}{c} 4559.2 \pm 1.0 \\ 4537.0 \pm 1.1 \\ 4522.5 \pm 2.0 \\ 4469 \pm 6 \\ 4408 \pm 14^{\circ} \end{array}$	$\begin{array}{c} 9.3 \pm 1.0 \\ 31.5 \pm 1.1 \\ 46 \pm 2.0 \\ 99.5 \pm 6 \\ 160.5 \pm 14 \end{array}$	$\begin{array}{l} 1150 \pm 75 \\ 1050 \pm 100 \\ 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Metal–Silicate Px–Ol Phosphates Oligo. Felds Opx–Mrl	Hf-W Pb-Pb Pb-Pb Ar-Ar ²⁴⁴ Pu	Kleine et al. (2008) Bouvier et al. (2007) Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
	Guareña	$\begin{array}{c} 4504.4 \pm 0.5 \\ 4454 \pm 6 \\ 4398 \pm 15^{\circ} \end{array}$	$\begin{array}{c} 64.1 \pm 0.5 \\ 114.5 \pm 6 \\ 170.5 \pm 15 \end{array}$	$750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30$	Phosphates Oligo. Felds Opx–Mrl	Pb–Pb Ar–Ar ²⁴⁴ Pu	Göpel et al. (1994) Trieloff et al. (2003) Trieloff et al. (2003)
	Estacado	$\begin{array}{c} 4558.6 \pm 1.6 \\ 4527.6 \pm 6.3 \\ 4492 \pm 15 \\ 4435 \pm 5 \\ 4371 \pm 13^{\circ} \end{array}$	$\begin{array}{c} 9.9 \pm 1.6 \\ 40.9 \pm 6.3 \\ 76.5 \pm 15 \\ 133.5 \pm 5 \\ 197.5 \pm 13 \end{array}$	$\begin{array}{l} 1150 \pm 75 \\ 1050 \pm 100 \\ 750 \pm 50 \\ 550 \pm 20 \\ 390 \pm 30 \end{array}$	Metal–Silicate Chondrule Phosphates Oligo. Felds Opx-Mrl	Hf–W Pb–Pb Pb–Pb Ar–Ar ²⁴⁴ Pu	Kleine et al. (2008) Blinova et al. (2007) Blinova et al. (2007) Trieloff et al. (2003) Trieloff et al. (2003)

D. Baratoux - Kobe University, 15th - 16th June 2016

D. Baratoux - Kobe University, 15th - 16th June 2016

Duration of accretion 0.2 Myr

D. Baratoux - Kobe University, 15th - 16th June 2016

Duration of accretion 2 Myr

The time interval of accretion is unlikely to have been more than 0.5 Myr supporting evidence in favour of rapid accretion

Magma oceans

 $^{26}AI + {}^{60}Fe$

Accretion Energy

Magma ocean are inescapable for (large planets)