高速回転する薄い球殻内の熱対流により 引き起こされる表層縞状構造の消滅

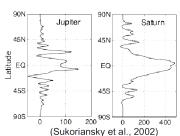
佐々木 洋平 (京大・数学), 竹広 真一 (京大・数理研), 石岡 圭一 (京大・理), 中島 健介 (九大・理), 林 祥介 (神戸大・理/CPS)

2016年3月15日

日本天文学会 2016 年春季年会 @ 首都大学東京

木星、土星の表層の帯状流

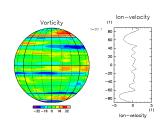
- 赤道域
 - 幅の広い西風(赤道加速)
- 中高緯度:
 - 縞状パターンに対応した 幅の狭い東西流

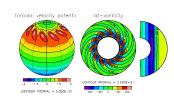


(Sukoriansky et.al, 2002)

「深い」モデルと「浅い」モデル

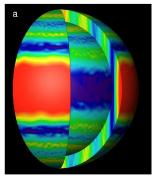
- 「浅い」モデル:
 - 回転球面 2 次元強制乱流
 - 回転球面多層モデル
 - 惑星表層内の (ほぼ)2 次元 的流体運動
 - 静水圧近似,コリオリカ水 平成分のみ
 - : 中高緯度の縞状構造
 - x:赤道域のジェット
- 「深い」モデル:
 - 回転球殻対流モデル
 - 流体層全体の運動
 - 非静水圧, コリオリ力を全 て計算
 - : 自転が速い ⇒ 赤道 加速
 - x:中高緯度の縞状構造

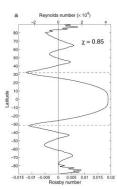




薄くするとシマシマできる?

- Heimpel and Aurnou (2007)
 - 薄い球殻
 - 1/8 セクター 計算
 - 超粘性の計算
 - 低エクマン数・ 高レイリー数 計算





帯状流分布

- 赤道付近:強い東風(赤道加速) ← レイノルズ応力による運動量輸送
- 中高緯度:縞状パターンの形成 ← 2次元 β面乱流 + ラインズ効果?

ここで疑問...

- Heimpel and Aurnou (2007) は高緯度シマシマを2 次元 β 面強制乱流の結果だと解釈している
- 一方.2次元球面強制乱流:長時間積分するとシ マシマは消える (Obuse et al. 2010)
- Heimpel and Aurnou (2007) の計算も, 長時間積分 すればシマシマは消えるんでないの?

そこで...

薄い球殻対流計算をもっと長くやってみよう. 1/8 セクターはやめよう. 全球計算.

回転球殼対流問題~定式化

• 運動方程式(速度の時間変化)

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \alpha g T \boldsymbol{r} + \nu \nabla^2 \boldsymbol{u},$$

• 熱の式 (温度の時間変化)

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = \kappa \nabla^2 T + Q,$$

質量保存の式

$$\nabla \cdot \boldsymbol{u} = 0.$$

t:時間, u:速度, T:温度, ρ :密度, p:圧力 Ω :自転角速度, α :熱膨張率, g:重力加速度 ν :粘性率, κ :熱拡散率, Q:内部熱源

全球長時間積分

- 全球計算 HA2007 は 1/8 セクター計算
- 長時間計算 (現状 12800 回転 = 0.2 粘性拡散時間) HA2007 は 1600 回転 = 0.024 粘性拡散時間)
- パラメータ設定
 - プランドル数: $Pr = \frac{\nu}{\kappa} = 0.1$
 - ・修正レイリー数: $Ra^* = \frac{\alpha g_o \Delta T}{\Omega^2 D} = 0.05$
 - エクマン数: $Ek = \frac{\nu}{\Omega D^2} = 3 \times 10^{-6}$
 - 球殻の内径外径比: $\eta = \frac{r_i}{r_i} = 0.85$
- 境界条件: 応力無し条件. 温度固定

数值解法

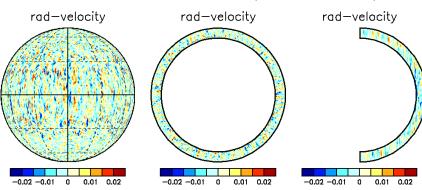
- 空間微分: スペクトル法
 - 速度をトロイダル・ポロイダルポテンシャルで表現
 - 水平方向は球面調和関数,動径方向はチェビシェフ多項式で展開
 - 切断波数: 水平 341, 鉛直 48 (格子点数: 経度 1024, 緯度 512, 鉛直 65)
- 時間積分:
 - 拡散項は Crank-Nicolson 法, それ以外は2次の Adams-Bashforth 法
 - 次式の超粘性を使用

$$\nu = \left\{ \begin{array}{ll} \nu_0, & \text{for } l \leq l_0, \\ \nu_0 [1 + \varepsilon (l - l_0)^2], & \text{for } l > l_0. \end{array} \right.$$

• 本研究: $l_0=21,42,85,170,\,\varepsilon=10^{-2}$. (段階的に超粘性の波数を大きくした)

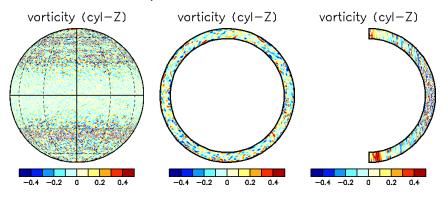
対流活動度

● 速度動径成分 ② t = 64030 (約 10000 回転).



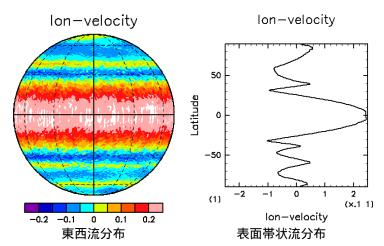
渦度

過度回転軸方向成分 @ t = 64030 (帯状平均成分は除いている)



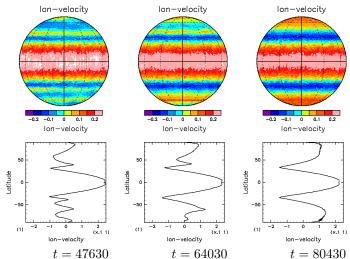
全球長時間積分

- t = 47630 でのスナップショット
 - 中高緯度でシマシマ形成



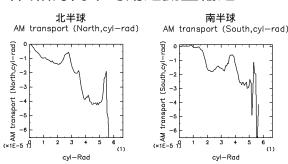
全球長時間積分

- もっと積分時間を延ばすと...
 - 次第に中高緯度のシマシマの数が減っていく



角運動量輸送

東西・回転軸方向平均角運動量輸送



負の角運動量外側へ輸送 ⇒ ロスビー波の外側伝播 ⇒ 中高緯度を加速,接円筒附近を減速

2016年3月15日

13 / 1

まとめ

- 木星・土星の縞状構造を深い対流モデルで説明することは難しい?
 - これまでの計算結果は時間積分が足りていなかった。過渡的状態での縞状構造
 - 長時間積分すると縞状構造が消える.
- なぜ縞状構造が消えていくのか?
 - 浅いモデル(順圧): まだ良く分かっていない
 - 深いモデル: ロスビー波による加速?

謝辞

回転球殻対流計算は海洋研究開発機構の地球シミュレータ ES2 を使用しました.

参考文献

- Heimpel, M., Aurnou, J., 2007: Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus, 187, 540-557.
- Obuse, K, Takehiro, S., Yamada, M., 2010: Long-time asymptotic states of forced two-dimensional barotropic incompressible flows on a rotating sphere. Phys. Fluids, 22, 056601.
- Sukoriansky, S., Galperin, B., Dikovskaya, N., 2002: Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett., 89, 124501-1-4.

15 / 1