惑星系形成領域の有機物進化

相川祐理(筑波大学計算科学研究センター)

collaborators: Kenji Furuya (JSPS fellow, Leiden Observatory) Yusuke Tsukamoto (riken) Haruaki Yoneda (Kobe Univ)

星・惑星系形成領域の有機物:太陽系始原物質

TagishLake隕石	Class	Concentration (ppm)	
A Roa	Aliphatic hydrocarbons	5	>35
1. 20	Aromatic hydrocarbons	≥1	15-28
2 - Constant as -	Polar hydrocarbons	n.d.	<120
	Carboxylic acids	40.0	>300
and the second second	Amino acids	<0.1	60
	Hydroxy acids	b.d.	15
	Dicarboxylic acids	17.5	>30
1 <u>µ</u> m	Dicarboximides	5.5	>50
	Pyridine carboxylic acids	7.5	>7
SEM	Sulfonic acids	≥20	67
		TagishLake	Murchson

¹⁵N濃縮

重水素濃縮 〕 🕫 🖽 🕁

星間起源?

星・惑星系形成領域の有機物:観測

大型有機分子@原始星

n(ギ酸メチル)/n_H~8×10⁻⁸ n(グリコールアルデヒド)/n_H~6×10⁻⁹

星・惑星系形成領域の有機物:観測

大型有機分子@原始惑星系円盤

星・惑星系形成領域の有機物:星間から惑星系へ

原始星コアでの大型有機分子/Si~10⁻³ 隕石中の有機物/Si~10⁻³-10⁻² 生物圏の炭素/地球のSi~10⁻⁹

星間物質は惑星形成において 有機分子の供給源となりうる

星·惑星系形成領域での観測 気相のみ 始原物質の分析 固相のみ

星・惑星系形成領域での気相・固相の組成進化モデル

星形成領域の化学:気相+固相

円盤形成時の組成進化

sink 粒子の導入による分子雲から円盤形成 までの輻射流体計算 (Tsukamoto et al. 2015)

cpu time: 数週間(天文台スパコン)

円盤形成の組成進化

コアの進化とともに高温領域拡大 → 流体素片内でラジカル反応の効く時間増加 → コア中心での大型有機分子増加

	gas	ice	mother molecule
CH ₃ OCH ₃	10 ⁻⁸	10-10	CH ₃ OH
HCOOCH ₃	10 ⁻⁹	10 ⁻⁹	H ₂ CO
C ₂ H ₆	10 ⁻⁷	10 ⁻⁷	CH ₄
C ₂ H ₂	5 × 10 ⁻⁹	6×10^{-10}	CH ₄

More chemical processing than in the first core stage (Furuya+13; Hincelin+14)

Longer timescale in warm temperature

星・惑星系形成領域の有機物:星間から惑星系へ

原始星コアでの大型有機分子/Si~10⁻³ 隕石中の有機物/Si~10⁻³-10⁻² 生物圏の炭素/地球のSi~10⁻⁹

星間物質は惑星形成において 有機分子の供給源となりうる

反応素過程の解明: 一反応速度、活性化エネルギー ←庄司さん講演 ーダスト表面反応のkinetics

ダスト表面反応のkinetics

平均場近似(表面に何個)では不十分
 e.g. 隣のサイトにある原子・分子

ダスト表面反応のkinetics

- 平均場近似(表面に何個)では不十分
 e.g. 隣のサイトにある原子・分子
- 分子生成⇔氷マントル表面構造
- → Microscopic MonteCarlo 室内実験の解析にも有効

cpu time:半日(ワークステーション)

まとめ

 星・惑星系形成領域での観測気相のみ

 始原物質の分析
 固相のみ

 惑星系形成時の物質進化

 惑星系形成時の物質進化

 惑星系形成時の物質進化

 惑星系形成時の物質進化

 惑星系形成過程の観測指標

 星・惑星系形成領域での気相・固相の組成進化モデル

 $\frac{dn(i)}{dt} = \sum_{j} \alpha_{ij} (T, F_{UV}) n(j) + \sum_{j,k} \beta_{ijk} (T, F_{UV}) n(j) n(k)$

 キーリアクションの抽出
 反応ネットワークの 精度向上

> 反応素過程の解明: 一反応速度、活性化エネルギー ←庄司さん講演 ーダスト表面反応のkinetics