Japanese-French model studies of planetary atmospheres @ CPS, Kobe University May 15, 2015

Radiation model development and its use for exoplanets

Masanori Onishi¹, George L. Hashimoto², Kiyoshi Kuramoto³, Yoshiyuki O. Takahashi¹, Masaki Ishiwatari³, Yasuto Takahashi³, Yoshi-Yuki Hayashi¹

1. Kobe University, 2. Okayama University, 3. Hokkaido University

1. Introduction

Radiative transfer model is a fundamental tool to clarify planetary environment

<u>Spectral analyses of radiation from a planet</u> which give us information about temperature and composition of its atmosphere

Estimate composition: e.g. Kreidberg et al., 2014

Energy budget calculations

with which we can proceed to discuss such as circulation of an atmosphere and evolution of a planet

> Habitable zone: e.g. Kopparapu et al., 2013 Planetary evolution: e.g. Hamano et al., 2013

 \Rightarrow

a high speed calculation covering a wide spectral range is required

a high resolution spectral calculation is required \uparrow^{flux}

2. Model Overview

Tropopause of steam atmosphere and inner edge of habitable zone

Inner edge of habitable zone:

- 1. Runaway greenhouse limit: net solar irradiance = radiation limit
- 2. Water loss limit:

a planet has ocean as long as 4.6 billion yr.

- •Kasting+1993: 0.95AU
- •Kopparapu+2013: 0.99AU

The model stratosphere was taken to be isothermal at 200K; this assumption has negligible effect on the runaway greenhouse limit but may have a significant effect on the "water loss" limit. (Kasting+1993)

We are trying to estimate tropopause temperature by 1-D lime-by-line model.

3. Application to exoplanets

Goldblatt et al., 2013

•Wavenumber range: 0 – 100000cm-1

3. Application to exoplanets

Results: Estimate of tropopause temperature & mixing ratio

Water loss limit is estimated near the previous studies.

We have been developing k-distribution model and trying to calculate 1-D radiative convective profiles.

Comparison of Earth atmosphere

3. Application to exoplanets

Atmospheric evolution and tropopause level

m-2 m]

×

Solar

 H_2O, CO_2, N_2

Solar radiation: NREL, 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00 H₂O: HITRAN2008, MT_CKD2.5, Chan+1993

CO2: HITRAN2008, MT_CKD2.5, Cairns&Samson 1966, Cook&Metzger 1964, Edward et al., 1953, Thompson et al., 1963

- O₃: HITRAN2008, MT CKD2.5
- O2: Hudson 1971, Cook&Metzger 1964, Watanabe&Marmo 1956, Nagata&Todomatsu 1973
- N₂: Hudson 1971, Cook&Metzger 1964, Watanabe&Marmo 1956

1. General circulation is modified?

Atmospheric evolution

H₂O, CO₂, N₂ O₂, O₃

2. Chemical radical is well mixed?

4. Summary

- We have been developing a radiative transfer model for exoplanets.
 Line-by-line model and k-distribution model for GCM (under development)
- The model is applied to exoplanet atmosphere.
 - We estimate tropopause temperature of convective atmosphere by 1-D line-by-line model.
 - Tropopause temperatures are lower than 200K as in surface temperature is lower than 340 K.
 - •Water loss limit is estimated near the previous studies.