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Introduction



Earth-like exoplanets

Three Potentially: Habitable Worlds
Around Gliese 667C :

 Many Earth-size planets have

been discovered. &, & ’
[ They may have va ri0us climates’ Gligse 667C ¢ Gliese-667Cf.GIiese667Ce
Since exoplanEtS are under http://www.si)]a(k:)e.ccl;:'n/zI
o. ® . o 1708-images-habitable-alien-
conditions which are different planets-giese-667c. il

from solar system.

— They provide new problems on existence condition
of Earth-like climate.

 Atmospheric component has been observable
— Information on the climate can be obtained directly.



Previous GCM experiments

* Some of previous studies with GCM

— Oblique planet: Williams and Pollard (2003) .
— Eccentric planet: Williams and Pollard (2002) C )
— Land planet: Abe et al. (2005) , Abe et al. (2011)

— Synchronously rotating planet:
Joshi et al. (1997), Merlis and Schneider (2011),
Edson et al. (2013), Yang et al. (2014)

* Most of previous studies discuss
whether exoplanets have habitable
environments.

* However, neither existence condition of
equilibrium state nor parameter range of
appearance of each climate state are not
investigated well.




Purpose of this study

* Making climate regime diagrams

* Determine existence ranges of equilibrium states, the
runaway greenhouse state, snowball state

Snowball state Runaway greenhouse state
Budyko (1969), EBM Nakajima et al (1992), 1d model
(WA mee2)
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e Systematic experiments (parameter sweep with a

same model and various initial conditions) are
necessary.

* Numerical simulation with more realistic
configuration (in the next step)



An example of climate regime diagram

Results of gray radiation model, Earth-like condition
| ‘(Ishiwatari et al., 2007)
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* Regime diagram makes existence ranges of regimes makes clear.

* Important points are (1) using multiple initial condition,
(2) comparison with low order model



Present status
of our research

(in a way to goal)



Target of experiment

* Synchronously Period  Solar Const.(S,...)
: ... 1day 10day 10 1 0.1
2z T y ,
rotating planets Bxoplancts i
— Many have been (gt T Cordfeas e e
detected by 5 o 10Mgyy, : /
exoplanet surveys = | .
— Planets near M- a2
type starsmaybe E | - *
habitable s |
wm 5 |
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Semi major axis (AU)
http://exoplanet.eu/catalog



* General circulation model: dcpam5

— http:www.gfd-dennou.org/library/dcpam/
— Takahashi et al. (talk on Monday)

* For various experiments with a same framework

ﬁ Venus (simple . A
~ Ml radiative forcing)
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Tone pattern differs among figures.

e Basic equations:3D primitive equation on a sphere

* Discretization: spectrum method(horizontal),
finite difference method(vertical)



Planetary rotation rate
dependence experiment
(gray radiation, no cloud)



’lanetary rotation rate dependence

experiment

* Purpose

. . % Period Solar Const.

— Examination on Q) ,_1iday loday 10 1 0.1

(planetary rotation rate a4

normalized by Earth’s

value) dependence of
day-night energy

transport

— Circulation changes according
to Q. Then, does day-night

energy transport also change
accordingto Q'?
l . | MR |

— Investigating the fos e i e o
change of atmospheric Semi major axis (AU)

circulation fields
according to Q°
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Physical parameterizations

* Radiation
— Water vapor is gray to IR radiation
— Dry gas is transparent
 Cumulus convection
— Convective adjustment (Manabe et al., 1965)

* Surface flux: Louis et al. (1982)

e Vertical turbulent mixing:
Mellor and Yamada (1974) level2.5

* Planetary surface :
flat surface, _ .
ocean with zero heat capacity (swamp condition),

no horizontal heat transport
* No cloud



Experimental configuration

Solar radiation flux is given only to dayside

Planetary rotation rate Q*: Day-side
0-1.0(18 cases) I

Planetary radius: 6.371 x 10® m
Solar constant: 1380 W m™
gravitational acceleration: 9.8 m s

latitude

cccccccccccc

Averaged surface pressure: 10° Pa | longitude
(RRRNNARRRRNNRRNETE
surface albedo: 0 o 30 60 00 1200

Resolution: T21L16

Initial condition: isothermal (280K) rest state(10 runs
with different noise)

Integration time: 2000 days
(last 1000 days is used for analysis)



Surface temperature for various Q°
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Horizontal wind and geopotential

Q "=0.0

0=0.17 (upper troposphere)
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Horizontal wind and geopotential

Q 0.15
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Horizontal wind and geopotential
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North-south asymmetric state

* Significant north-south asymmetric states appear in 0.2 <
0" <0.8

* The pattern reverses repeatedly.
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Horizontal wind and geopotential
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Dependence of energy transport on Q°
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* Total energy transport (summation of sensible and
latent energy transports) is almost independent of Q°




The radiation limit constraints
energy transport

' 1d model:
_ . :Hh=
Outgoing 4] |- ﬁ
infrared i :
radiation - éﬁ
[W/mz] [ J100%
00 -
B ® 0'=0.15 (GCM 120[deg]x12g[deg] region
® Q:=0-5 around subsolar point)
0"=1.0 -|
200 ———— L —
Hen 390

Surface '%?nnperatu re[K]

* Day-side infrared radiation is bounded by radiation limit of
1-dim model.
* Radiation limit: Nakajima et al. (1992), Ishiwatari et al. (2002)

* (Total energy transport) = (Incident flux) — (radiation limit):
independent of Q°




() dependence experiment
(non-gray radiation,
simple cloud model)



depenaence experiment

* Purpose

— Examination of Q" dependence of day-night
energy transport in more realistic configuration



Physical parameterizations

Radiation

— Absorption and emission by water vapor, CO,, cloud water
Chou and Lee (1996), Chou et al (2001)

— Solar radiation is assumed to be same as that of Sun
Cumulus convection

— Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992)
Surface flux: Beljaars and Holtslag (1991)
Vertical turbulent mixing: Mellor and Yamada (1974) level2.5

Planetary surface : ocean with zero heat capacity,
no horizontal heat transport

Simple cloud model

— considering its advection, turbulent mixing, generation and
extinction

0q. 0qc | qc
—=—-v-Vv—0—+F, + S, +—
ot oo turb c ;7

S, : Source of cloud water Je . extinction of cloud water

TLT
tuned as 7, = 1500sec

under Earth condition(T42L26)

—Condensation in large scale condensation scheme
—Detrain from could top in RAS scheme



Experimental configuration

 Rotation rate:
0*=0.0, 0.5, 1.0

* Solar constant is fixed: $=1366 W/m?

* Cloud extinction time:
TLT=OI
1.5 X 103 sec (tuned value under Earth condition),
1.5 X 10°sec

* Resolution: T42L26
* Integration period: 3 Earth year



Day-night energy transport

Heat Flux

Energy transport to the night side (365day mean)
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* Again, the amount of day-night total energy
transport is almost independent of Q°



Surface temperature & cloud water
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Solar constant
dependence experiment
(non-gray radiation,
simple cloud model)



olar constant dependence experiment

(ongoing
* Purpose Period  Solar Const.
. >, Aday 10day 10 1 0.1
— Examination on the A
occurrence condition S10° ¢

of the runaway =
greenhouse state 73
— Comparison of cases with e 7
clouds and cases without &

(Yp)

clouds | dal
— Comparison of | ock
P . Dy adius
planet configuration and Semi major axis (AU)

Earth configuration



Experimental configuration

 Rotation rate: Q*=1.0

* Cloud extinction time:
T;7=0, 1.5 X 103 sec

e Solar constant: S=1366-2200W/m?

 Two kinds of distributions of incident

solar flux

— Synchronously rotating planet configuration
— Earth configuration

* Resolution: T42L26
* Integration period: 3 Earth year



Runaway threshold

 Results of runs with increased solar constant

5=1366
5=1600
5=1800
5=2000
5=2200

SyncRot

O
O

X

No-SyncRot SyncRot

O
O

X

O
O
O
O

X

No-SyncRot

O
O

X ?

O :equilibrium states, X :runaway greenhouse states



Concluding remarks



TODO list (very long...)

* Experiments with more realistic configuration
— Stellar spectrum type, Ocean, Seaice, ....

— Model development is also ongoing:
radiation scheme (Onishi’s talk in today’s afternoon)

* Understanding variety of climate with climateregime
diagram
— Examination of occurrence conditions of runaway
greenhouse and snowball state

— Making climate regime diagrams

— We have not been able to draw 0 F
regime diagram even for synchronously ’
rotating planet.

— Consideration on other configuration:
land planet,
very hot planet (runaway planet), etc.
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 We are performing numerical experiments and

model development in order to make climate
regime diagrams.

* Experiments on synchronously rotating planets

— Day-night energy transport is almost independent of Q*.

— Examination on the occurrence condition of
the runaway greenhouse is ongoing.
Is runaway threshold also independent of Q*?

* On going (or near future) subjects

— Model development for more realistic simulation

— Examination of climate regimes in parameter spaces

not only for synchronously rotating planet but also
for land planet etc.



