

Present status of numerical experiments on climates of terrestrial exoplanets by GFD-Dennou Club dcmodel project

M. Ishiwatari^(1,2)

Collaborators: Y.O. Takahashi^(2,3), K. Nakajima⁽⁴⁾, S. Takehiro⁽⁵⁾, S. Noda⁽⁵⁾, Y.-Y. Hayashi^(2,3) and members of dcmodel project

(1) Hokkaido University (2) Center of Planetary Science (CPS)
(3) Kobe University (4) Kyushu University (5)Kyoto University
Japanese-French model studies of planetary atmospheres, May 15, 2015

Outline of this presentation

- Introduction
 - Key words: Earth-like exoplanets, AGCM, Climate regime diagram
- Present status of our research
 - Target of experiment: Synchronously rotating planet
 - Planetary rotation rate dependence experiment (gray radiation, no cloud)
 - Planetary rotation rate dependence experiment (non-gray radiation, simple cloud model)
 - Solar constant dependence experiment (non-gray radiation, simple cloud model)
- Concluding remarks

Introduction

Earth-like exoplanets

- Many Earth-size planets have been discovered.
- They may have various climates, since exoplanets are under conditions which are different from solar system.

http://www.space.com/2 1708-images-habitable-alienplanets-gliese-667c.html

- They provide new problems on existence condition of Earth-like climate.
- Atmospheric component has been observable
 - Information on the climate can be obtained directly.

Previous GCM experiments

- Some of previous studies with GCM
 - Oblique planet: Williams and Pollard (2003)
 - Eccentric planet: Williams and Pollard (2002)
 - Land planet: Abe et al. (2005) , Abe et al. (2011)
 - Synchronously rotating planet: Joshi et al. (1997), Merlis and Schneider (2011), Edson et al. (2013), Yang et al. (2014)
- Most of previous studies discuss whether exoplanets have habitable environments.
- However, neither existence condition of equilibrium state nor parameter range of appearance of each climate state are not investigated well.

Purpose of this study

- Making climate regime diagrams
 - Determine existence ranges of equilibrium states, the runaway greenhouse state, snowball state

- Systematic experiments (parameter sweep with a same model and various initial conditions) are necessary.
- Numerical simulation with more realistic configuration (in the next step)

An example of climate regime diagram

Results of gray radiation model, Earth-like condition

- Regime diagram makes existence ranges of regimes makes clear.
- Important points are (1) using multiple initial condition,
 (2) comparison with low order model

Present status of our research (in a way to goal)

Target of experiment

- Synchronously rotating planets
 - Many have been detected by exoplanet surveys
 - Planets near Mtype stars may be habitable

Model

- General circulation model: dcpam5
 - http://www.gfd-dennou.org/library/dcpam/
 - Takahashi et al. (talk on Monday)
- For various experiments with a same framework

- Basic equations:3D primitive equation on a sphere
- Discretization: spectrum method(horizontal), finite difference method(vertical)

Planetary rotation rate dependence experiment (gray radiation, no cloud)

Planetary rotation rate dependence experiment

- Purpose
 - Examination on Ω* (planetary rotation rate normalized by Earth's value) dependence of day-night energy transport
 - Circulation changes according to Ω^* . Then, does day-night energy transport also change according to Ω^* ?
 - Investigating the change of atmospheric circulation fields according to Ω^*

Physical parameterizations

- Radiation
 - Water vapor is gray to IR radiation
 - Dry gas is transparent
- Cumulus convection
 - Convective adjustment (Manabe et al., 1965)
- Surface flux: Louis et al. (1982)
- Vertical turbulent mixing: Mellor and Yamada (1974) level2.5
- Planetary surface : flat surface, ocean with zero heat capacity (swamp condition), no horizontal heat transport
- No cloud

Experimental configuration

- Solar radiation flux is given only to dayside
- **Planetary rotation rate \Omega^*:** 0 – 1.0 (18 cases)
- Planetary radius: 6.371 x 10⁶ m
- Solar constant: 1380 W m⁻²
- gravitational acceleration: 9.8 m s⁻²
- Averaged surface pressure: 10⁵ Pa
- surface albedo: 0

Day-side Night-side atitude atitude -30 -60(degree_north)30 180 210 240 270 dearee east longitude 300 600 900 1200

- **Resolution: T21L16**
- Initial condition: isothermal (280K) rest state(10 runs with different noise)
- **Integration time: 2000 days** (last 1000 days is used for analysis)

Surface temperature for various Ω^*

$\Omega^* = 0$

longitude

 $\Omega^* = 0.25$

 Ω^{*} = 0.05

Ω^* = 0.15

1000-2000day

North-south asymmetric state

- Significant north-south asymmetric states appear in $0.2 \leq \Omega^* \leq 0.8$
- The pattern reverses repeatedly.

zonal mean surface pressure

Dependence of energy transport on Ω^*

Rotation rate (normalized by Earth's value)

• Total energy transport (summation of sensible and latent energy transports) is almost independent of Ω^*

The radiation limit constraints energy transport

- Day-side infrared radiation is bounded by radiation limit of 1-dim model.
 - Radiation limit: Nakajima et al. (1992), Ishiwatari et al. (2002)
- (Total energy transport) = (Incident flux) (radiation limit): independent of Ω^{*}

Ω dependence experiment (non-gray radiation, simple cloud model)

Ω^{*} dependence experiment (non-gray, cloud)

• Purpose

- Examination of Ω^* dependence of day-night energy transport in more realistic configuration

Physical parameterizations

- Radiation
 - Absorption and emission by water vapor, CO₂, cloud water Chou and Lee (1996), Chou et al (2001)
 - Solar radiation is assumed to be same as that of Sun
- Cumulus convection
 - Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992)
- Surface flux: Beljaars and Holtslag (1991)
- Vertical turbulent mixing: Mellor and Yamada (1974) level2.5
- Planetary surface : ocean with zero heat capacity, no horizontal heat transport
- Simple cloud model
 - considering its advection, turbulent mixing, generation and extinction

$$\frac{\partial q_c}{\partial t} = -v \cdot \nabla v - \dot{\sigma} \frac{\partial q_c}{\partial \sigma} + F_{turb} + S_c + \frac{q_c}{\tau_{LC}}$$

S_c : Source of cloud water –Condensation in large scale condensation scheme –Detrain from could top in RAS scheme $\tau_{LT} = \tau_{LT}$ $\frac{q_c}{\tau_{LT}}$: extinction of cloud water tuned as $\tau_{LT} = 1500$ sec under Earth condition(T42L26)

Experimental configuration

- Rotation rate:
 Ω^{*}=0.0, 0.5, 1.0
- Solar constant is fixed: S=1366 W/m²
- Cloud extinction time:

τ_{LT}=0,

 1.5×10^{3} sec (tuned value under Earth condition), 1.5×10^{6} sec

- Resolution: T42L26
- Integration period: 3 Earth year

Day-night energy transport

Energy transport to the night side (365day mean) S=1366W/m²

• Again, the amount of day-night total energy transport is almost independent of Ω^*

Surface temperature & cloud water

Solar constant dependence experiment (non-gray radiation, simple cloud model)

Solar constant dependence experiment (ongoing)

- Purpose
 - Examination on the occurrence condition of the runaway greenhouse state
 - Comparison of cases with clouds and cases without clouds
 - Comparison of synchronously rotating planet configuration and Earth configuration

Experimental configuration

- Rotation rate: Ω*=1.0
- Cloud extinction time: τ_{LT} =0, 1.5 × 10³ sec
- Solar constant: S=1366-2200W/m²
- Two kinds of distributions of incident solar flux
 - Synchronously rotating planet configuration
 - Earth configuration
- Resolution: T42L26
- Integration period: 3 Earth year

Runaway threshold

• Results of runs with increased solar constant

	Without Cloud		With cloud	
	SyncRot	No-SyncRot	SyncRot	No-SyncRot
S=1366	0	0	0	0
S=1600	0	0	0	0
S=1800	×	×	0	
S=2000			0	×?
S=2200			×	

O:equilibrium states, ×:runaway greenhouse states

Concluding remarks

TODO list (very long...)

- Experiments with more realistic configuration
 - Stellar spectrum type, Ocean, Sea ice,
 - Model development is also ongoing: radiation scheme (Onishi's talk in today's afternoon)
- Understanding variety of climate with climateregime diagram
 - Examination of occurrence conditions of runaway greenhouse and snowball state
 - Making climate regime diagrams
 - We have not been able to draw regime diagram even for synchronously rotating planet.
 - Consideration on other configuration: land planet, very hot planet (runaway planet), etc.

Summary

- We are performing numerical experiments and model development in order to make climate regime diagrams.
- Experiments on synchronously rotating planets
 - Day-night energy transport is almost independent of Ω^* .
 - Examination on the occurrence condition of the runaway greenhouse is ongoing.
 Is runaway threshold also independent of Ω*?
- On going (or near future) subjects
 - Model development for more realistic simulation
 - Examination of climate regimes in parameter spaces not only for synchronously rotating planet but also for land planet etc.