#### Numerical Simulations of Jupiter's Moist Convection Layer: Structure and Dynamics in Statistically Steady States

K. Sugiyama<sup>1)</sup>, K. Nakajima<sup>2)</sup>, M. Odaka<sup>3)</sup>, K. Kuramoto<sup>3,5)</sup>, Y. Hayashi<sup>4,5)</sup>

ISAS/JAXA, JAPAN, 2) Kyushu Univ., JAPAN,
 Hokkaido Univ., JAPAN, 4) Kobe Univ., JAPAN,
 Center for Planetary Science

Japanese-French model studies of planetary atmospheres@Kobe



- The mean vertical structure of the cloud layer in Jupiter's atmosphere is thought to be maintained by the statistical contribution of a large number of clouds driven by internal and radiative heating/ cooling over multiple cloud life cycles.
- However, the mean vertical structure and its relationship to cloud convection has not been clarified yet.
  - The thick visible clouds prevent the vertical structure of the entire cloud layer to be observed by remote sensing.
  - Galileo probe's entry site is one of hot spots which are cloudless region.



- The mean vertical structure of the cloud layer in Jupiter's atmosphere is thought to be maintained by the statistical contribution of a large number of clouds driven by internal and radiative heating/ cooling over multiple cloud life cycles.
- However, the mean vertical structure and its relationship to cloud convection has not been clarified yet.
  - The thick visible clouds prevent the vertical structure of the entire cloud layer to be observed by remote sensing.
  - Galileo probe's entry site is one of hot spots which are cloudless region.



Fig. Convective clouds observed by Galileo (Vasavada and Showman, 2005)

- The mean vertical profiles of the atmosphere have been illustrated by the results obtained using onedimensional equilibrium cloud condensation models (ECCM)
  - Weidenschilling and Lewis (1973), Atreya and Romani (1985)
- But, atmospheric dynamics and cloud physical processes would modify the features obtained by ECCM.



Fig. Vertical structure of Jupiter's cloud obtained by the equilibrium cloud condensation model (Atreya *et al*, 1999).

Three Cloud layers!

- One of the important role of condensation is to form stable layers
- Molecular weight of each condensable gas (H<sub>2</sub>O, NH<sub>3</sub>, H<sub>2</sub>S) is larger than that of major component (H<sub>2</sub> or He).
- If condensation occurs and the condensate is removed by precipitation, the mean molecular weight decreases and stable layer is formed.
  - Three-stable layers will exist in the moist convection layer.



Fig: Vertical profile of static stability estimated by using ECCM.

#### In our study

- We have been developing cloud resolving model (deepconv) that incorporates phase change and cloud microphysics.
- We investigate idealistic characteristics of convective motion and mean vertical structure of the moist convection layer that is established through a large number of life cycles of convective clouds.
  - Nakajima et al. (2000) [consider H<sub>2</sub>O only]
  - Sugiyama et al. (2009, 2011, 2014) [consider  $H_2O$ ,  $NH_3$ ,  $H_2S$ ]
- In this presentation,
  - We demonstrate the temporal variation of the characteristics in the moist convection layer.
  - The dependency on deep abundances of condensible gases are also demonstrated.

# Model & Setup of Exp.

#### Numerical model

- The dynamical framework of our model is two-dimensional in the horizontal and vertical directions, and is based on the quasi-compressible system (Klemp and Wilhelmson, 1978).
  - The system consists of the equations of motion, continuity and thermodynamic and conservation equations of condensible species.
  - Radiation transfer process is very crudely represented.
  - Cloud microphysics process: The bulk parameterization scheme (vapor, non-precipitating and precipitating condensates) of Kessler (1969) that is well-used in Earth's atmospheric simulation is used.



#### Set-up of the experiments

- The balance among the upwelling <u>heat</u> <u>flux from the deep interior</u>, the upward <u>heat transport by moist convection</u>, and net <u>radiative cooling</u> caused by solar and long-wave radiation is considered.
  - The effect of the heat supply from the deep interior is realized by keeping the values of the potential temperature and mixing ratios constant at the lower boundary.
  - The net radiative cooling is simply represented as horizontally and temporally uniform body cooling at the upper troposphere.



**Constant Temperature** & abundances

#### Set-up of the experiments



- Cooling rate (Q<sub>rad</sub>):
  -0.01 K/day (typical value)
  -0.1 K/day
- deep abundances:
  - 1 x solar
  - 3 x solar
  - 10 x solar
    - The solar values are taken from Grevesse et al. (2007).
- Integral time
  - about 3 years

## Results

We show the results of Control Exp. (CTRL) using  $Q_{rad} = -0.01$  K/day and deep abundance is 1 x solar.

#### Animation



#### Horizontal average

- The convective activity of the whole layer is not steady but quasi-periodic with a period of about 40 days.
  - We will refer the time when the active cloud convection occurs as `active period' (A) and the other as `quiet period' (Q).
- The value of virtual potential temperature rapidly increases during the active periods, and decreases steadily with time during the quiet period.

Condensates



H<sub>2</sub>C

#### Development of clouds (1)

- At the beginning of quiet period, moist convection associated with NH<sub>3</sub>
   condensation occurs and the NH<sub>3</sub> clouds are distributed horizontally.
  - Vertical motion is weak
    (w = ~ 5 m/s)
- Note that the vertical motion in the sub-cloud layer is the remnant of convective motion driven during an active period.



#### Development of clouds (2)

- As time progresses, NH<sub>4</sub>SH clouds appear, followed by H<sub>2</sub>O clouds.
- Mixing of different condensable gases and condensates across the NH<sub>3</sub> LCL or NH<sub>4</sub>SH LCL is weak, but occurs occasionally due to the upward or downward penetration of convective plumes.
  - LCL is "lifting condensation level".



#### **Development of clouds (3)**

- Following the onset of NH<sub>4</sub>SH clouds, stronger H<sub>2</sub>O clouds begin to form and become localized.
  - The base of H<sub>2</sub>O cloud is deeper than the previous time.
- Distribution of condensible gases is still almost horizontally uniform.
  - Mixing of different 
    condensible gases
    across the NH<sub>3</sub> LCL or
    NH<sub>4</sub>SH LCL is still
    weak.



#### **Development of clouds (4)**

- $H_2O$  active clouds develop **0.4** from the  $H_2O$  LCL.
- The vertical motion in the moist convection layer is characterized by narrow, strong, cloudy updrafts and wide, weak, dry downdrafts.
- H<sub>2</sub>O LCL continues to acts as a significant dynamical and compositional boundary.
  - Stable layer is exists
  - Updrafts and downdrafts penetrate the NH<sub>3</sub> and NH<sub>4</sub>SH



#### Time & horizontal average

- Considerable amounts of H<sub>2</sub>O and NH<sub>4</sub>SH cloud particles are observed above the NH<sub>3</sub> LCL.
- The mixing ratios of NH<sub>3</sub> and H<sub>2</sub>S start to decrease with height not at their respective LCLs but at the H<sub>2</sub>O LCL.
- These characteristics are not the same as that of ECCM.



### Dependency on deep abundance

The body cooling rate is set to be 10 times larger than that of CTRL in order to save the CPU time.

#### Dependency on deep abundances

- The results of the series of calculation are qualitatively similar to that of CTRL.
- The period of the quasi-periodic cycle is roughly proportional to the deep abundance of H<sub>2</sub>O vapor.

|        | deep abundances<br>(solar) | period (day) | ratio |
|--------|----------------------------|--------------|-------|
| R10    | 1                          | 9            | 1     |
| R10S3  | 3                          | 19           | 2.1   |
| R10S10 | 10                         | 139          | 16    |



## Discussion & Conclusion

#### Why intermittent?

- Active cloud development is terminated when the instability is completely exhausted.
  - An integral measure of convective instability (A) increase in the quiet periods and decrease rapidly in the active periods.
  - At the end of the active periods, A is almost z

![](_page_22_Figure_4.jpeg)

- The trigger of active convections are  $H_2O$  condensate that falls down through the H<sub>2</sub>O LCL.
  - The upward flow driven by H<sub>2</sub>O re-evaporation carry moist air from below to the moist convection layer.
- The period of intermittency is roughly equal to the time obtained by dividing the mean temperature increase by the body cooling rate.

#### Summary

- Active cloud convection occurs intermittently.
  - The existence of vigorous cumulonimbus clouds is supported by several recent observational studies (Gierasch et al., 2000; Simon-Miller et al., 2000; Sromovsky and Fry, 2010).
- The H<sub>2</sub>O condensation level acts as a steady kinematic and compositional boundary because of the strong stable layer associated with the H<sub>2</sub>O condensation.
  - The present results do not reproduce the observation made by the Galileo probe that all condensable gases are depleted below the  $H_2O$  LCL (Wong et al., 2004).
  - Dry air parcels can rarely penetrate below the H<sub>2</sub>O LCL, since the H<sub>2</sub>O LCL acts as a strong dynamical and compositional boundary.
- The averaged vertical profiles of clouds and condensible gases are distinctly different from those predicted by ECCM.
  - By considering the vertical mixing due to convection, the small NH<sub>3</sub> abundance derived from analysis of radio observation (Pater et al., 2001, Gibson et al., 2005) can be explained.
- The period of the quasi-periodic cycle is roughly proportional to the deep abundance of  $H_2O$  gas.