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Introduction

* The mean vertical structure of the cloud
layer in Jupiter's atmosphere is thought
to be maintained by the statistical
contribution of a large number of clouds
driven by internal and radiative heating/
cooling over multiple cloud life cycles.

e However, the mean vertical structure and

its relationship to cloud convection has
not been clarified yet.

- The thick visible clouds prevent the
vertical structure of the entire cloud
layer to be observed by remote
sensing.

- Galileo probe’s entry site is one of hot
spots which are cloudless region.
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e The mean vertical structure of the cloud
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its relationship to cloud convection has
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vertical structure of the entire cloud ——
layer to be observed by remote Lightning

sensing. Fig. Convective clouds
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- Galileo probe’s entry site is one of hot
spots which are cloudless region.



Introduction

e The mean vertical profiles of the
atmosphere have been
illustrated by the results
obtained using one-
dimensional equilibrium cloud
condensation models (ECCM)

- Weidenschilling and Lewis (1973),
Atreya and Romani (1985)

e But, atmospheric dynamics and
cloud physical processes would
modify the features obtained by
ECCM.
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Fig. Vertical structure of Jupiter’s cloud
obtained by the equilibrium cloud
condensation model (Atreya et al, 1999).
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Introduction

* One of the important role of (Pa)
condensation is to form stable ——— T
layers 2

e Molecular weight of each 5= NH3(s)

condensable gas (H,O, NH;, H,S)
is larger than that of major
component (H, or He).
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is formed.

- Three-stable layers will exist in

the moist convection layer. Fig: Vertical profile of static stability

estimated by using ECCM.



In our study

= \We have been developing cloud resolving model (deepconv)
that incorporates phase change and cloud microphysics.

= We investigate idealistic characteristics of convective motion
and mean vertical structure of the moist convection layer that
is established through a large number of life cycles of
convective clouds.

- Nakajima et al. (2000) [consider H,O only]

- Sugiyama et al. (2009, 2011, 2014) [consider H,O, NH;,
H,S]

* |n this presentation,

- We demonstrate the temporal variation of the
characteristics in the moist convection layer.

- The dependency on deep abundances of condensible
gases are also demonstrated.



Model &
Setup of Exp.




Numerical model

e The dynamical framework of our model is two-dimensional in
the horizontal and vertical directions, and is based on the
quasi-compressible system (Klemp and Wilhelmson, 1978).

- The system consists of the equations of motion, continuity
and thermodynamic and conservation equations of
condensible species.

- Radiation transfer process is very crudely represented.

- Cloud microphysics process: The bulk parameterization
scheme (vapor, non-precipitating and precipitating
condensates) of Kessler (1969) that is well-used in Earth's
atmospheric simulation is used.
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Set-up of the experiments

e The balance among the upwelling heat
flux from the deep interior, the upward
heat transport by moist convection, and
net radiative cooling caused by solar and
long-wave radiation is considered.

Ititude

- The effect of the heat supply from the
deep interior is realized by keeping the <
values of the potential temperature and
mixing ratios constant at the lower
boundary.

- The net radiative cooling is simply
represented as horizontally and
temporally uniform body cooling at the
upper troposphere.
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Set-up of the experiments

e Cooling rate (Q,,4):

1024 km (Ax =2 km) . -0.01 K/day (typical value)

A
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Results

We show the results of Control Exp. (CTRL)
using Q. 4 =-0.01 K/day and deep abundance is
1 x solar.
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Horizontal average

e The convective activity of the
whole layer is not steady but
quasi-periodic with a period of
about 40 days. 0.1

- We will refer the time when 4 |
the active cloud convection €
occurs as ‘active period' (A)
and the other as "quiet
period’ (Q). T T T T

e The value of virtual potential Virtual potential temperature (+490 K)

temperature rapidly increases 0. N
during the active periods, and 15
decreases steadily with time
during the quiet period.
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Development of clouds (1)
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Development of clouds (2)
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Development of clouds (3)

. ©)1=85889 Condensates
e Following the onset of 0:
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Development of cl

ouds (4)
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Time & horizontal average

e Considerable amounts of H,O and NH,SH cloud particles are
observed above the NH; LCL.

e The mixing ratios of NH; and H,S start to decrease with height
not at their respective LCLs but at the H,O LCL.

e These characteristics are not the same as that of ECCM.
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Dependency on deep
abundance

The body cooling rate is set to be 10 times larger
than that of CTRL in order to save the CPU time.
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Discussion &
Conclusion




Why intermittent?

e Active cloud development is terminated when the instability is
completely exhausted.

- Anintegral measure of convective instability (A) increase in the
quiet periods and decrease rapidly in the active periods

- Atthe end of the active periods, A is almost z
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. The trigger of active convections are H,O condensate that falls
down through the H,O LCL.

- The upward flow driven by H,O re-evaporation carry moist air
from below to the moist convection layer

e The period of intermittency is roughly equal to the time

obtained by dividing the mean temperature increase by the
- bodx COO|Inﬂ rate. -



Summary

e Active cloud convection occurs intermittently.

- The existence of vigorous cumulonimbus clouds is supported by several recent
observational studies (Gierasch et al., 2000; Simon-Miller et al., 2000: Sromovsky and Fry, 2010).

e The H,O condensation level acts as a steady kinematic and
compositional boundary because of the strong stable layer
associated with the H,O condensation.

- The present results do not reproduce the observation made by the Galileo probe
that all condensable gases are depleted below the H,O LCL (Wong et al., 2004).

- Dry air parcels can rarely penetrate below the H,O LCL, since the H,O LCL acts as
a strong dynamical and compositional boundary.
e The averaged vertical profiles of clouds and condensible gases are
distinctly different from those predicted by ECCM.

- By considering the vertical mixing due to convection, the small NH; abundance
derived from analysis of radio observation (Pater et al., 2001, Gibson et al., 2005) can be
explained.

e The period of the quasi-periodic cycle is roughly proportional to the
deep abundance of H,O gas.



