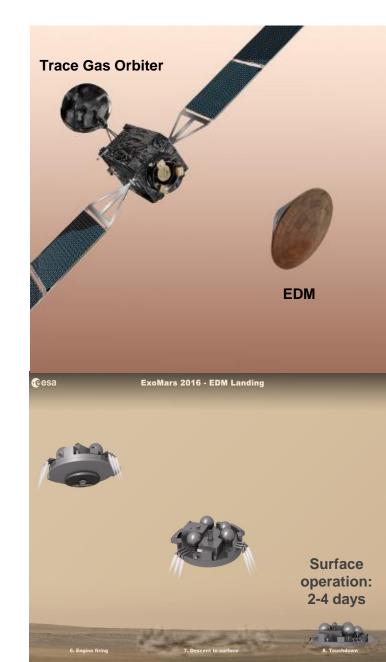

ExoMars 2016 and 2018 programme a very brief description (and LMD's implication therein)

Ehouarn Millour for the LMD team


May 14th 2015, Kobe

ExoMars Programme in cooperation with Roscosmos: ESA's flagship mission in Robotic Exploration

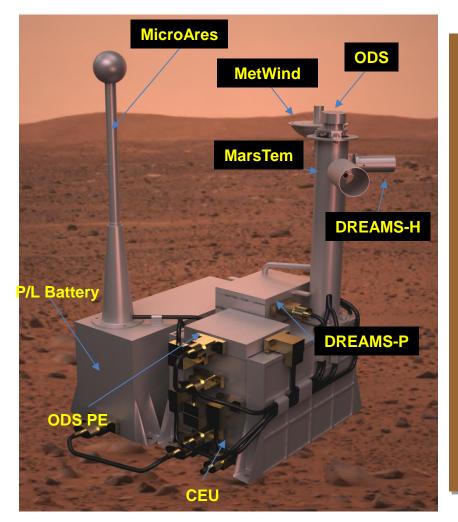
ExoMars 2016

- The 2016 mission will carry a 600 kg
 Entry and descent Demonstration
 Module (EDM) that shall allow Europe
 to test and demonstrate its capability to
 land on Mars, and improve EDL
 technologies for future missions.
- For this purpose, it will be equipped with a suite of sensors:
 - Front shield : pressure sensors + 7 thermal plugs
 - Back Shield sun sensors, 3 thermal plugs, Infrared radiometer
 - 2 Inertial measurement units
 - Near surface radar altimeter
 - Downward looking descent camera
- LMD involved (as sub-contractor to TAS-I) in the characterization of the atmosphere for the preparation of EDL

The science of the ExoMars 2016 EDM

The EDM will support two major scientific motivations:

 Improve our knowledge of Mars atmosphere with in-situ observations (Entry-Descent-Landing phase)
 => AMELIA experiment

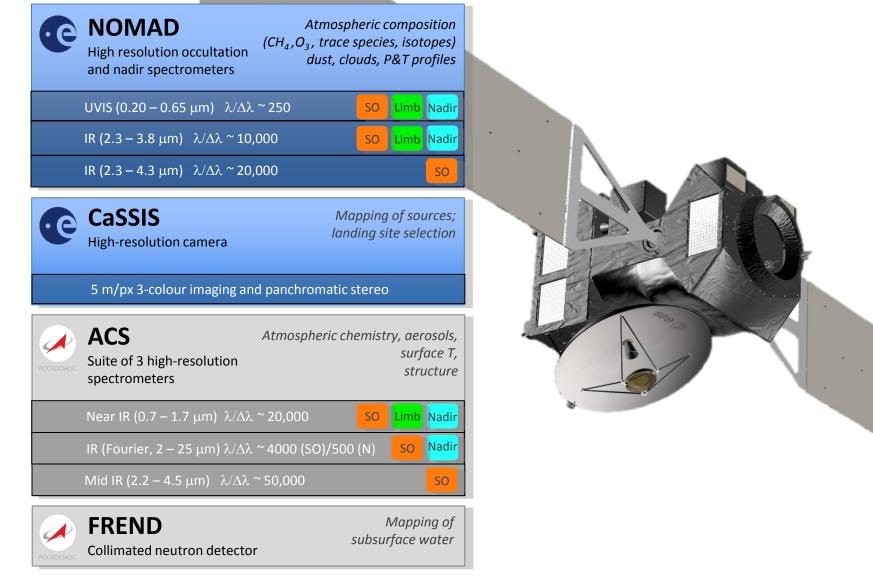

PI:F. Ferri (Univ. Padova, It.)co-PIs:F. Forget (Fr.), S. Lewis (UK), O. Katatekin (Bel.)+ 20 co-Is + 10 collaborators from 7 countries

 Improve our knowledge of Mars environment at times of high dust loading (Surface operations)
 DREAMS experiment

PI:F. Esposito (INAF, It.)co-PI:F. Montmessin (Fr.)+ 6 lead-Cols + 40 co-ls from 9 countries

EDM Surface Payload (DREAMS)

•Short lived: will only operate a few days (2-4) on the surface of Mars


DREAMS is an integrated and autonomous system which will perform:

•First ever investigation of **atmospheric** electric phenomena on Mars

•Characterization of the diurnal cycle during the dusty season.

Trace Gas Orbiter Science instruments

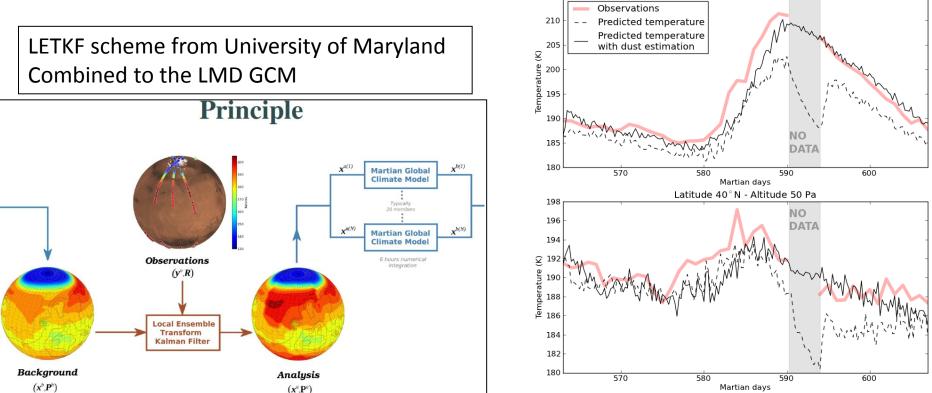
💽 esa 🛹

Х

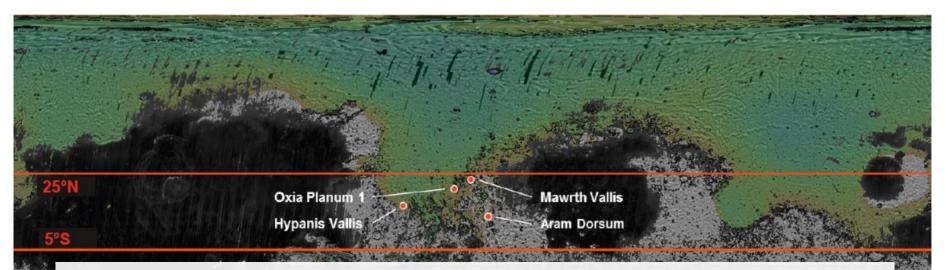
0

All resolving power figures $\lambda/\Delta\lambda$ are calculated at mid-range

Major Scientific Products


- Spatially-resolved inventory of trace gases and key isotopes
 - Monitoring and profiling of CO, H₂O/HDO, organics, aerosols, ... (NOMAD, ACS)
 - Mapping and profiling of isotopologues and O₃ (NOMAD)
 - Monitor meteorology , and back-track trace gas sources
 - => Confirm/characterise CH₄ presence on Mars
 - mapping, profiling, image of sources and terrain
- Higher resolution mapping of sub-surface water and hydrated minerals (FREND)
- High resolution, colour and stereo coverage of extended areas (incl. future landing sites), with focus on trace gas sources and dynamic processes (CaSSIS)

LMD implication in ExoMars Trace Gas Orbiter


- In performing retrievals using ACS (S. Guerlet).
- In performing data assimilation of ACS in near « real time » conditions to support retrievals for other instruments.

=> PhD work of T. Navarro: Using LETKF on Mars Climate Sounder data

Strategy: Temperature biases are also corrected by adding dust (and/or water vapor) based on dust-cloud-temperature correlations and/or direct aerosol observations.

ExoMars 2018 Candidates Landing sites

- The four candidate sites lie around the Chryse basin.
- They all possess a record of ancient sediment deposition and alteration acting over large scales (spatial and temporal), requiring a lot of water:
 - Mawrth Vallis and Oxia Planum are in extensive, finely layered phyllosilicate-rich areas.
 - Aram Dorsum and Hypanis Vallis are in alluvial settings: A sinuous river (Aram) and a delta/fan (Hypanis).
- The clays at Mawrth and Oxia, and the Aram Dorsum floodplains, date from the very early, habitable epoch of Mars.
- The Hypanis Vallis deltaic deposits are more recent (early Hesperian).
- F. Forget is a member of the LLSWG (Landing Site Selection Working Group)

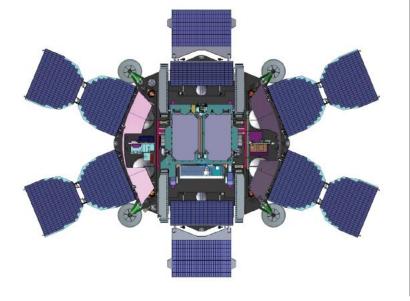
EXOMARS 2018 ROVER AND LANDED PLATFORM

A rover dedicated to the search for signs of life

Nominal mission: Nominal science: Cycles +

Surveys EC length: Rover mass: Mobility range: 220 sols 6 Experiment 2 Vertical

> 16–20 sols 300-kg class Several km


Rover Pasteur Payload Geological context	E X OM A R	
Wide-angle stereo camera pair High-resolution cameraRover traverse planning Atmospheric studies		
WAC 35° FOV, HRC 5° FOV		
ISEM Bulk mineralogy of outcrops IR spectrometer on mast Target selection	Analytical Laboratory Drawer	
1.15 – 3.3 μm, 1° FOV	Mineralogical characterization VIS + IR Spectrometer Mineralogical characterization of crushed sample material Pointing for other instruments	
Geological deposition environment Microtexture of rocks Morphological biomarkers	0.9 – 3.5 μm, 256 x 256 pixels, 20-μm/pixel, 500 steps	
20-μm resolution at 50-cm distance	Geochemical composition Raman spectrometer	
WISDOMMapping of subsurface stratigraphyGround-penetrating radarstratigraphy	spectral shift range 200–3800 cm ⁻¹ , resolution \leq 6 cm ⁻¹	
3 – 5-m penetration, 2-cm resolution	MOMA LDMS + Pyr-Dev GCMS Broad-range organic molecule detection at high sensitivity (ppb)	
FREND Mapping of subsurface Passive neutron detector Water and hydrated minerals	Lowis + Pyr-bev GCWis Chirality determination Laser-desorption extraction and mass spectroscopy	
Drill + Ma_MISS In-situ mineralogy information IR borehole spectrometer	Step-heating & Pyrolysis extraction in the presence of derivatisation agents, coupled with chiral gas chromatography and mass spectroscopy	
0.4 – 2.2 μm		

Instrument Name	Description	Countries
PanCam (WAC + HRC)	Panoramic camera system	UK , D, CH H/W F, I, A, USA Sci
ISEM	IR spectrometer for bulk mineralogy identification	RUS
WISDOM	Shallow ground-penetrating radar for subsurface stratigraphy	F , D N, USA, B, I, E, UK
FREND	Passive neutron spectrometer for subsurface water content	RUS
CLUPI on drill box	Close-Up Imager	CH , F CAN, UK, D, I, B
Ma_MISS included in 2.0-m drill	IR borehole spectrometer	l P, PL
MicrOmega	Vis+IR imaging spectrometer	F CH, RUS, I, D, UK
RLS	Raman spectrometer	Sp , F, UK D, NL, USA
MOMA	LD-MS + Pyr-Der GC-MS for organic molecule characterisation	D , F, USA NL, S

ExoMars 2018 Russian Surface platform:

(European contributed payload currently under selection) Lifetime ~1 Earth year

Fig. DM with unfolded solar panels (view from the top)

Instrument	Description	Mass, kg
TSPP	Set of cameras to characterise the landing site environment	3.4
BIP	Instrument interface and memory unit	3.0
METEO	Meteorological package	3.4
FAST	IR Fourier spectrometer to study the atmosphere	3.5
ADRON-EM	Active neutron spectrometer and dosimeter (can work in tandem with the rover neutron detector)	5.6
M-DLS	Multi-channel Diode-Laser Spectrometer for atmospheric investigations	2.6
PAT-M	Radio thermometer for soil temperatures (down to 50-cm depth)	0.6
Dust Suite	Dust particle size, impact, and atmospheric charging instrument suite	1.6
SEM	Seismometer	1.5
MGAP	GC-MS for atmospheric analysis	7.0
MAIGRET	Magnetometer	1.7
To be selected through this call	European-led instrument(s) (or integrated suite of sensors)	3.5
TOTAL		37.4

'able 2. SP Model Payload. The mass figures are best engineering estimates without instrument harness