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Introduction

e A Mars surface exploration program is discussed
by space engineering and planetary science
communities in Japan (MARS-EDL).

e Evaluation of plausible range of meteorological
conditions at landing site is required.

- To support designing the landing module and
observation instruments and ensure safety
mission operation

e We join MARS-EDL working group, because
it is a good chance to improve our models and
to get experience of performing assessment for
exploration program.




Models

e Qur research group now progress to assess the Mars surface
environment by using following numerical models results.

- General Circulation Model (GCM):
DCPAM (developed by GFD_Dennou_Club)

- Cloud Resolving models (CRM)
CReSS-Mars (developed by Nagoya U.)
deepconv (developed by GFD_Dennou_Club)

- a Large Eddy Simulation (LES) model
SCALE-LES (developed by RIKEN AICS)




Models: summary of our status

@DCPAM [GCM] (developed by GFD_Dennou_Club)

- Proper calibration for assessment of Mars surface environment is
established.

- The calibrated data are used in Mars-EDL working group.
GRGSS-MarS [CRM] (developed by Nagoya U., Japan)

- As a preparation, a lot of numerical experiments are performed in
order to examine performance of CReSS-Mars

® deepconv [CRM] (developed by GFD_Dennou_Club)
- Topography is not considered.

- We are planning to perform comparative experiments between
CReSS-Mars and deepconv with idealistic condition.

e SCALE-LES [LES] (developed by RIKEN)

- Some idealistic experiments are performed (see presentation of
Dr. Nishizawa)
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We show:

Comparison between simulation results of DCPAM and
observations

Proper calibration for assessment of Mars surface environment
by using DCPAM data.
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Model and Simulation setup

e DCPAM is a planetary atmospheric general circulation model
developed by GFD Dennou Club (Takahashi et al. 2012).

- A spectral GCM designed
by using primitive equation system.

- Physical processes are included
e subgrid scale turbulence

e CO, condensation/sublimation - sar cadied
2 T~ solar radiation

planetary radiation

e atmospheric and dust radiation
e surface process

grid points {
in the atmosphere ‘ wind

- The topography, surface albedo
. .. s CO, condensation
and thermal inertia in the model W ason  subimaton
are based on observation results )

obtained by Mars Global Surveyor polar cag
(MGS).
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Figure: Schematic figure of DCPAM




Model and Simulation setup

e Simulation setup is as follows.
- Resolution
e The horizontal truncation wave number is 31

(dx ~ 200 km).

e The number of vertical layer is 36 and the height of
lowest level is about 3 m.

- Dust opacity
e MGS senario [default]
e constant opacity (t=0, 1, 3, 5)

- Numerical integration is performed for 7 Mars years with
isothermal no motion initial condition.

e The data of last two years are used for analysis.




Comparison results:
Surface atmospheric temperature

e Diurnal variation of atmospheric temperature at 1.5 m height
observed by MPF is well reproduced.

- Logarithmic wind and temperature profiles under neutral
stratification are assumed.

- interpolating with ground temperature and atmospheric
temperature at 2nd model level (about 12.5 m height).
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Figure: Diurnal variation of ground and atmospheric temperatures
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Comparison results:
Surface atmospheric pressure

e The seasonal variation of surface pressure observed by Viking
Lander 1 (VL1) is almost represented by the model with some

calibrations

- a height difference between the model grid and actual
landing site by using a scale height at 10th model level

- uncertainty of global mean atmospheric mass by
subtracting 60 Pa.
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Figure: Seasonal variation of surface pressure at Viking Lander 1 site:



Contribution to MARS-EDL

at proposed landing sites is published on a Web.

e This data is used in Mars-EDL working group.
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Assessment of Mars surface environment
using Cloud Resolving Model, CReSS-Mars

K. Sugiyama, M. Odaka, K. Nakajima, Y. O. Takahas1hi,
S. Nishizawa, N. Otobe, G. Hashimoto,
K. Hasegawa, A. Sakakibara, K. Tsuboki

« 2D experiment with idealized boundary condition

* We examine whether the obtained diurnal change of

temperature is consistent with the data obtained by
DCPAM-1D and NASA's Mars lander, Spirit.

» 3D experiment using DCPAM data

* We examine whether CReSS-Mars successfully run when
considering very steep slope and using DCPAM data
as initial and boundary conditions.




Model description

* We apply CReSS to Martian atmosphere since April 2013

CReSS is a well-developed cloud resolving model used in studies
of terrestrial mesoscale phenomena (Tsuboki and Sakakibara, 2002).

e (CReSS-Mars is based on CReSS ver.3.4.

Dynamical core: quasi-compressible system (Klemp and
Wilhelmson, 1978).

Sub-grid scale turbulence: Deardorff (1980).
¢ also used by Spiga et al. (2010)

Radiation: Takahashi et al. (2003, 2006)
e CO, gas and dust are considered.
e The source code of DCPAM is installed

Surface momentum and heat fluxes: Louis et al. (1982).

The surface and ground temperature are calculated by
using one-dimensional thermal diffusion equation.




2D experiment with idealized boundary condition

* Location: Spirit landing site (14.65,175.56) [ g T -
® Dustopacity: 7=0.3 F.
e No topography

e Cyclic condition (Horizontal)
e Grid size: 250 x 200 (2-dimensional) o At &
e Resolution: Ax =200 m, Az (mean) =200 m, Az(min)=2m

e [nitial temperature profile: calculated by DCPAM-1D.

* Integral time: 6 days.

e |n order check variability, other mixing length of unstable layer
included turbulence parameterization is also used.

- default:/=14(z) (Deardorff, 1980) L?L?nfsllﬁggrsrﬁg::ﬁe

e suggested by Spiga et al. (2010) / surface. Its origin is a

forecast model of Japan
— 1/3 —
* where /0 = (Ax Ay Az)Y°, k=0.4 Meteorological Agency

- testcase: 1/I =|1/«z|+ 1/ [,(z) (CReSS original)




Compare to DCPAM-1D

Surface temperature
e The results are almost o
consistent with those obtained , |
by 1D convective-radiative 2 1
model (DCPAM-1D). :ém-
Q
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Compare to Spirit observation

e Atdaytime (LT=10:05, 12:55, 16:30 ), temperature lapse rate
near the surface is roughly consistent with the observation.
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Dependency on the mixing length

Parameter: the mixing length of unstable layer.

e The mixing length of - default: /=1, (2) (Deardorff, 1980)
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3D experiment using DCPAM data

® Location:
Opportunity landing site (1.95, 2.5W)

e Gridsize: 750 x 500 x 64

e Resolution:
Ax = Ay = 0.012° (~700 m),
Az (mean) = 500m, Az (min) =20 m

e Dust opacity: 7= 0.3

e Season: Ls = 0 (the vernal equinox day)

e Simulation data of DCPAM is used as initial and boundary
conditions in order to consider the large-scale effect.

e Topography are considered
* |Integral time: 2 days (177600 sec)



Results

e The temporal variation of convective activity is successfully

calculated.
- Small-scale circulation in daytime is similar to that obtained

LES calculation.
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Other sites ...

e At Opportunity landing site, CReSS-Mars
successfully run using DCPAM data as
initial and boundary conditions.

e However, CReSS-Mars can not run when
considering very steep slope such a
possible landing site of MARS-EDL.

® One of the reasons may be grid
interval of DCPAM and CReSS-Mars

- DCPAM: dx ~ 200 km

- CReSS-Mars: dx ~ 500 - 1000 m
(domain size : L ~300 - 500 km)

e We will try to change nesting
DCPAM (dx ~ 200 km)
=> CReSS-Mars (dx ~ 10 km)
=> CReSS-Mars (dx < 1 km)




Summary

e Some numerical experiments are performed in order to
examine performance of CReSS-Mars

o 2D experiment with idealized boundary condition

- The obtained diurnal change of temperature is consistent with
the data obtained by DCPAM-1D and NASA's Mars lander, Spirit.

- The mixing length of the turbulence process is one of the major
problem, which effects temperature profile near the surface.

e 3D experiment using DCPAM data

- In some cases, CReSS-Mars successfully run using DCPAM data as
initial and boundary conditions.

- We will try to change nesting in order to perform simulation with
very steep slope such a possible landing site of MARS-EDL.




