Data analysis of Mars orbiters:

Rederivation of MGS radio occultation's temperature with the consideration of CO₂ condensation in the Martian atmosphere

Katsuyuki Noguchi and Sayaka Ikeda (Nara Women's University)

Takeshi Kuroda (Tohoku University)

Martin Pätzold and Silvia Tellmann (Köln University)

Noguchi et al. [2014, JGR]:

Estimation of changes in the composition of the Martian atmosphere caused by CO2 condensation from GRS Ar measurements and its application to the rederivation of MGS radio occultation measurements

Summary

- Martian atmospheric composition:
 CO₂ and other gases (N₂, Ar, etc...)
- Radio occultation, which can probe temperature profiles, needs the information of composition rate
- Problem: CO₂ condensation at polar night causes change of composition rate (CO₂ depletion and other non-condensation species' increase), which affects radio occultation measurements
- But no observation of the seasonal change of (all the) composition rate available
- We show
 - how to estimate the change of composition rate and
 - Radio occultation rederivation using the estimated rate

Martian (neutral) atmosphere

- Composition
- →Observed by Viking lander (1970's)

Main species: CO₂ 95%

Other main species: N_2 2.7 %, Ar 1.6%

- Pressure
- →less than 1/100 of Earth Large seasonal change (20-30%) caused by condensation of CO₂in polar nights

Drastic pressure change by CO₂ condensation

Time on Mars

Sol: One day on Mars (≒24 hours)

MY(Mars Year): Year on Mars (≒2 Earth years)

Ls (Solar Longitude): Seasons of Mars

Elliptical orbit \rightarrow Seasons in the SH are more extreme (i.e., hotter summer and colder winter) in the NH.

Condensation of CO₂ in the Martian atmosphere

Frequently observed in the mesosphere and polar nights

IR obs. (20um) by Viking orbiter

Radio occultation (RO) measurement

- Probes temperature profiles (T precision<1K, alt. resolution<1km)
- Utilizes radio waves transmitted from spacecraft to receiver on Earth, which pass through planetary atmosphere
- Records radio waves' frequency changes according to vertical distribution of atmospheric refractivity
- Provides refractivity → number density of air → temperature

Data flowchart

Time series of frequency changes of radio waves

Vertical profile of refractivity μ

$$\mu - 1 = \sum \kappa_i n_i$$

Using composition rate!

Hydrostatic equilibrium
Using composition rate!

Vertical profile of pressure *P*

ideal gas law

Vertical profile of temperature *T*

Temperature retrieval by RO

Needs atmospheric composition ratio when

- 1. Converting refractivity μ to number density of air n $\rightarrow \mu 1 = \sum \kappa_i n_i$ κ : factors specific for gases
- 2. Using mean molecular weight to retrieve temperature from number density, assuming hydrostatic equilibrium
- →However, previous studies did not consider the change of atmospheric composition ratio caused by CO₂ condensation

Purpose of study

This study

- Estimates the change of composition rate including CO₂
- Rederives the MGS RO temperature to discuss CO₂ condensation (saturation) and vertical distribution of mixing ratio
 - About 70 profiles of MGS-RO in the southern polar night region, where the effect of CO2 condensation is strongest.

Method: estimation of seasonal change of composition rate

- Main three constituents: CO₂, Ar, N₂
- Only Ar 's mixing ratio can be available from observations (Gamma Ray Spectrometer of Mars Odyssey [Sprague et al., 2012])
- \rightarrow how to obtain N₂ and CO₂?
- N_2 : Ratio of Ar and N2 (2.7% : 1.6%) should be kept because N_2 and Ar do not condensate.

$$N_2 = 2.7/1.6 \text{ Ar}$$

- $CO_2 = 100 (N_2 + Ar) [\%]$
- → Empirical model of seasonal changes of the three gases' mixing ratio obtained!

Note: Constant vertical profiles assumed in this step (We will discuss this point later).

Results

 Rederived temperature of MGS-RO utilizing the newly estimated composition rate

Sample: Rederivation with 78% CO₂

 Overestimation of temperature without consideration of CO₂ condensation

 We utilize the updated MGS-RO temperature and pressure data to calculate the degree of CO₂ supersaturation

Discussion: vertical profiles of gases

Problem: there is no direct measurements of vertical structures of atmospheric composition during CO2 condensation in polar nights.

Results when applying vertical distribution of MCD Ar for MGS-RO rederivation:

Result rederived looks realistic...

P [Pa] 3021Q31A (230.6E) 10 Original Constant VMR Alt. dep. VMR 100 135 140 145 150 155 Temperature [K]

Looks unrealistic...

- Needs good estimation of vertical profiles (especially in the lower layer)
- Other way around, we might be able to obtain the information on the mixing ratio if we adjust temperature to CO2 saturation temperature (or 35% supersaturation temperature) \rightarrow future work!

Conclusion

- We rederive MGS-RO temperature and pressure profiles with the consideration of CO₂ condensation in the Martian atmosphere
- Overestimation of RO temperature occurs if we do not consider CO₂ condensation
- Uncertainty of the vertical profiles of the constituents causes large errors of temperature

Advertisement: A symposium on radio science for Earth and planetary atmospheres will be held at Nara Women's university on June 1, 2015. Please join!!

