

High resolution LES experiment on Marian PBL

Nishizawa, S., H. Yashiro, M. Odaka, Y. O. Takahashi, S. Takehiro, M. Ishiwatari, K. Nakajima, Y. Sato, K. Sugiyama, H. Tomita, and Y.-Y. Hayashi

Introduction

- Martian planetary boundary layer
 - Well mixed atmospheric layer near the surface (result of heating by solar radiation)
 - Strong convection and turbulence
 - Exchange heat and materials between the ground and atmosphere
 - Lift dust (dust storm)

http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20050527a.html

Introduction (Cont.)

- Purpose of this study
 - To understand
 - Turbulent statistics
 - Character of dust devil

Smaller scale variability at lower layer High resolution simulation is necessary

Model

• SCALE-LES

- An LES model developed by RIKEN AICS
- Fully compressive equations
- Open software (http://scale.aics.riken.jp/)

Schemes used in this study

- Dynamics: full explicit (HE-VE), 3-step RK
- SGS turbulence: Smagorinsky type
- Surface flux: Louis type

Experimental configurations

Experimental configurations

- Domain: 19.2km x 19.2km x 21km
- Lateral boundaries: double periodic
- Bottom boundary: flat (no topography), uniform roughness
- Moist processes: dry condition
- Radiation, surface temperature: external radiative heating rate and surface temperature obtained by a vertical 1D model experiment (Odaka et al. 2001)

• Experimental parameter

- Spatial resolution
 - Δxyz: 100, 50, 25, 10, 5 m (isotropic grid)

Initial condition

- Vertical temperature profile (Odaka et al. 2001) + small random perturbations, steady state
- For the 5m run, state at 14:00LT of the 10m run is used as the initial condition

Temporal integration

- 1 day integration from 00:00 LT (1 hour integration for the 5m run)
 - Analyses are done using 14:30LT data

Vertical velocity distribution

• • •

Dependency on resolution (z=200m)

×

1/16 domain 14:30LT

Dependency on height (5m run)

red: upflow, blue: downflow

- Narrow and strong upward flow
- Finer structure at lower level

1/16 domain 14:30LT

Frequency distribution

200 m height

2 km height

5m run 10m run 25m run 50m run 100m run

Turbulent statistics

• • •

vortex

 \bullet \bullet \bullet

Pressure distribution

tau=0.2, Δxyz=25m, y=20km, t=14:00

tau=0.2, Δxyz=25m, z=12.5m, t=14:00

Vertical vorticity (z=200m)

1.00

0.50

0.00

-0

Frequency distribution

Number frequency distribution of isolated vortices

Assuming the Rankine's vortex (5mrun, 2.5m height)

Maximum wind speed

Radius

Summary

- 20km domain PBL experiment with several resolutions
 - Fine structure at lower level is represented with such high resolution simulation
 - Strong vortices are reasonably represented
 - A logarithmic law of intensity, maximum speed, and radius of vortices are found

・以下予備の図

Introduction 1

・火星とは

- 。 軌道長半径: 約 1.5AU
- 。公転周期 :約1.88地球年
- ・自転周期
 ・約 1.026地球日
- o 赤道半径 :約 3396km
- 大気組成 :二酸化炭素約95%
- 。 地表大気圧: 約 7hPa
- 。 地表温度 : 130-300K

Dependency on resolution (z=2km)

14:30LT

鉛直速度 高度500m 解像度依存性

渦度 500m 解像度依存性

-0.5

鉛直速度 最下層 解像度依存性

1/16領域 14:30LT (初期値から14.5h後)

・火星大気の境界層の高解像度ラージエディー シミュレーション(LES)

- 。 使用モデル: 理研AICSソフトウェア "SCALE-LES"
 - 構造格子 有限体積法
 - ・完全陽解法 3 段RK(大域通信の必要無し)
- 。最大問題規模:約500億格子
- 計算諸情報
 - 。 使用計算機: 京
 - o 演算実効効率: 7.9% (5m解像度計算時)

	100m実験	50m実験	25m実験	10m実験	5m実験	
積分時間	24時間 x 3	24時間 x 3	24時間 x 3	19時間	1時間	
Δt	0.12 s	0.06 s	0.03 s	0.012 s	0.006 s	
時間ステップ数	720K x 3	1.4M x 3	2.9M x 3	5.7 M	600K	
格子数	6.8M	52M	410M	6.3G	49G	
使用コア数	96	1,152	18,432	115,200	57,600	
Elapse time	100 h	100 h	100 h	200 h	200 h	