Large eddy simulations for terrestrial convective mixed layers

Junshi Ito (Meteorological Research Institute)

Outline

LES studies:

1. Earth convection

– Tropical cyclone

2. Terrestrial convective mixed layer

2.1 Dust devil

2.2 Development of parameterization: Horizontal eddy diffusivity for numerical weather prediction models

1. LES for entire tropical cyclone

- "Japan metrological agency's non-hydrostatic model" generally used for operational regional weather prediction
 - \rightarrow Used as LES with cloud physics
 - Horizontal resolution: dx=100 m
 - Domain: 2000km×2000km×27km
 - Grid number: 20000×20000×60
 - Doubly periodic horizontal boundaries
 - Horizontal homogenous surface (sea)
 - Initial condition: Tropical cyclone developed with dx=2 km is interpolated to dx=100 m

conducted by 1/8nodes of K-computer (~ 10000 nodes) Idealize experiment

Result (Cloud water amount, $9 \rightarrow 10$ hr)

0012 sec

200km

Result (Cloud water amount, $9 \rightarrow 10$ hr)

0000 s Studies on micro-scale structures in boundary layer is on going

2.1 LES for dust devil

- a. Sensitivity test on diurnal variation, surface heat flux, and ambient wind (Ito et al., 2010)
- b. Formation mechanism (Ito et al., 2011; Ito et al., 2013)
- c. Population of simulated dust devils
- d. Feedback between surface heat flux and dust devil wind

Ito (2011) PIV of dust devil (Ito and Niino 2014)

LES model

Assume typical convective mixed layer on the Earth

- Basic equations: 3D, Boussinesq approximation
- Sub-grid model: Smagorinsky model
- Grid interval: uniform $\Delta = 50 \sim 5$ m
- Domain: e.g. 4.5 km×4.5 km×3.6 km (90×90×60 grids) for Δ=50 m
 1.8 km×1.8 km×1.6 km (360×360×320 grids) for Δ= 5 m
- Boundary conditions
 - Surface
 - Momentum: Bulk-method or Free-slip
 - Heat: Prescribe Horizontally uniform forcing with diurnal variation or constant
 - Lateral: Doubly-periodic
 - Top: Free-slip
- Initial conditions: Stable stratification $\Gamma(=4.0 \text{K/km})$
- Time integration: 0.2s step

Simulated dust devils

12:00~12:30, Δ =5m, vertical vorticity ζ >0.25s⁻¹, ζ <-0.25s⁻¹ Thick yellow at the bottom: updraft regions

a. Sensitivity test on diurnal variation, surface heat flux, and ambient wind

 Impose diurnal-varying surface heat flux

$$Q = Q_{\max} \times \sin \overset{\mathcal{R}}{\underset{e}{\overset{t}{\leftarrow}}} \frac{t - 7\ddot{0}}{11} \overset{\dot{}}{\overset{\div}{\overset{}}}$$

Various sensitivity tests

Maximum of surface heat flux Q_{max}

		0.24K∙m s⁻¹	0.15K • m s ⁻¹
Ambient wind	0.5m s⁻¹	A1	B1
	5m s⁻¹	A2	B2
	15m s⁻¹	A3	B3

Favorable environment

Maximum vertical vorticity $\zeta(s^{-1})$ in horizontal sections at each height

Structure in convective mixed layer

A1: Weaker ambient wind, larger surface heat flux

B3: **Stronger** ambient wind, **smaller** surface heat flux

Consistent with observation (Hess and Spillane, 1990)

Vertical velocity_{y(m)} ³⁵ in horizontal section @14:00, ²⁵ z=50m

b. Formation mechanism

LES (e.g. Kanak 2005) have shown dust devils can occur even in horizontally homogeneous convective mixed layer without ambient wind → Formation mechanism?

No quantitative study on formation mechanism has been presented

Vorticity analysis results in inconsistent between backward-trajectories due to active CBL turbulence...

→ Circulation analysis (Ito et al., 2013)

Circulation analysis

Fluid particles are distributed a the core of dust devil

Change of the Γ : $\frac{dG}{dt} = F_d + B$ F_d : Turbulent mixing B : Baroclinic production Shrink of MS ⇔ Stretching of vorticity Tilting of MS ⇔ Tilting of vorticity

Material surface (MS) in a dust devil

Focusing on the strongest dust devil in LES (dx=5m, Free-slip)

A MS of horizontal $20m \times 20m$ square at z=7.5m is placed in the dust devil

The MS consisting of 40,000 triangle patches is tracked with 20,000 backward-trajectories

Tracking of Material Surface

Shading: height (m)

Results and discussion

→ Vertical vorticity stretching in convergence from a wide horizontal area is significant

c. Population of simulated dust devils

Information of All pressure minima p' < -5 Pa at Output every time step Track all simulated vortices automatically through a day (0700–1700 LST);

only p' <-10 pa are presented

Example: time series of p' of each tracked vortex between 1330 and 1400 LST

LES

The number of Tracked vortices

LES: dx=20km, Domain: 4.2km×4.2km×4km

Maximum of diurnally varying surface heat flux	The number of vortices whose p' <-10 pa
0.24 K • ms ⁻¹	423
0.34 K • ms ⁻¹	757
0.5 K • ms ⁻¹	1728

Frequency of Intensity

Based on maximum -p' of thorough its lifetime

Lifetime vs Intensity

Radius vs Intensity

 $\rightarrow\,$ weak positive relationship between radius and intensity

Vortex merging vs Intensity

The number of merged tracked vortices (p' < -5 pa)

The number of merged vortices.

• Some vortices merge more than 10 other vortices

 $\leftrightarrow \quad \text{Vortex merge is unnecessary for forming strong vortex}$

d. Feedback between surface heat flux and dust devil wind

Surface heat flux Q: $Q = Q_f \circ 0.5 \times \sin((t - 7)/11)$ (LES so far) Horizontally homogeneous: (In reality) Depends on near-surface wind speeds (i.e. Bulk method: $Q = C_H U \Delta \theta$) U: Wind speed at lowest level Possible positive feedback Whirl wind induce locally large $Q \rightarrow$ Intensify dust devil \rightarrow **Stronger whirl wind** $\rightarrow \dots$ (c.f. WISHE to develop Tropical cyclone) Quasi-bulk method $Q = Q_f \times \frac{U}{\langle U \rangle}$ Horizontal average remain the same

<U>: horizontal average of U

Comparison of pressure depression

The feedback between surface heat flux and whirl wind may form stronger dust devils

2.2 LES to develop parameterization

section at the middle of CML

Horizontal turbulent diffusivity K_h

little investigated so far, but significant for high horizontal resolution

Given

< Horizontal turbulent flux> = - $K_h \times Gradient$

Passive scalar to evaluate diffusivity

< > : horizontal average over domain

LES model (almost the same as that for dust devil)

Basic equation	3-D, dry, and Boussinesq approximation
Sub-grid	Smagorinsky-Lilly model
Resolution	25 m
Domain	18 km × 18 km × 5.0 km
Boundary	Lateral: doubly periodic
conditions	Bottom: Constant flux Q (Heat) + Friction given by bulk method (Momentum)
Initial conditions	U=0m/s, Stable stratification (Γ =4.0K/km)
Time step	0.2 s

Vertical profile of non-dimensional K_h

(Ito et al. 2014)

Summary

- LES for Earth: huge LES for entire tropical cyclone was conducted
- LES for terrestrial convective mixed layers
 - Dust devil
 - Favorable environment: weak ambient wind and strong surface heat flux
 - Formation Mechanism: Convergence of preexisted circulation over wide horizontal area
 - Population is evaluated
 - Positive feedback between surface flux and wind

Horizontal eddy diffusivity

Non-dimensional horizontal diffusivity

 $K_{h} \sim 0.1$

Scaling by w_* for different standard potential temperature θ_0

Q=0.2Kms⁻¹, Γ =0.004K/km, dx=50m, θ_0 =300K, 400K, and 2000K (Difference between planets?)

Convective velocity *w*^{*} seems to be velocity scale

 \rightarrow What is length scale that depend little on time?

Wind speed estimated by PIV (Ito et al. 2014)

- Particle Image Velocimetry (PIV) is performed
- RGB difference between two successive time steps at the front of the dust devil → Wind vectors in pixel/s

 Stereoscope of the dust devil by two cameras and height of observer → 1 pixel = 13 cm (physical unit)

0. PIV of a dust devil

• Tucson, Arizona, 19/7/2012

3. Scaling of dust devils

CBL has self-similarity \rightarrow Scaled by CBL height h, convective velocity w_{*}, and so on (Deardroff 1970)

Vorticity of dust devil can be also scaled as

~(a velocity scale)/(a length scale)?

A natural choice:

- A velocity scale: Convective velocity *w**?
- A length scale: CBL height h?

 \rightarrow Vorticity scale $\frac{W_*}{h} \mu h^{-3/2}$

Inconsistent because vorticity scale become small when CBL develop

$$w_* \circ \left(gQh/q_0\right)^{\frac{1}{3}}$$

g: gravitational constant Q: surface heat flux θ_0 : standard

temperature

LES for exploring scaling

Domain : 4.5km×4.5km×3km; no ambient wind Parameters to be changed

 Surface heat flux Q: Constant (0.005, 0.1, 0.2, or 0.3 K • m/s)

 $h = \sqrt{\frac{2Qt}{2}}$

- Grid resolution Δ : (50 \rightarrow 6.25m)
- Standard temperature θ_0
- Initial stratification Γ : 4, 8 K/m

CBL height h is also varied by time t; h increase as square root of t

Scaling by w_* for various Q

Dependence on dx

Correlation between w_{*} and ζ_{max} ; Q=0.2K • m/s, Γ =0.004K/m, Various dx

dx=50 m \rightarrow 12.5 m: halving dx doubles vorticity dx=12.5 m \rightarrow 6.25 m: vertical vorticity increase more moderate

Scaling of circulation

Correlation between w^* and circulation in the range of 50m by 50m horizontal plane at z=75 m

Simulated dust devil vorticity may strongly depend on resolution *dx*

Effect of ambient rotation (Ito et al. 2012)

Time series of maximum Positive vertical vorticity and Negative vertical vorticity at z = 25 m with LES whose $\Delta = 50$ m

6. Dust suspension

- Include dust processes
 - Bulk formula for upward dust flux F_d at lowest level (Loosmore and Hunt, 2000)
 - $F_d \equiv 3.6(u_*)^3$, u_* : frictional velocity
 - Gravitational settling
 - Prognostic equation of dust concentration c
- No ambient wind
- dx=25m

3D image of dust concentration c at 1500 LST

Shade: dust concentration White circles: larger vertical vorticity

Dust amount in CBL

Horizontally averaged dust concentration 12 µg m⁻³ Hight (m) 1st day Assume gravitational Sunset Sunrise Time (LST) settling at night 12 µg m⁻³ 2nd day Hight (m) 1200 1.86 times larger concentration ∞ day Time (LST) $c_1 + 0.86c_1 + 0.86^2c_1 + 0.86^3c_1 + \cdot \cdot \cdot + 0.86^{\infty}c_1 \rightarrow 7.16c_1$