A numerical study on convection of a condensing CO₂ atmosphere under an early Mars like condition

Tatsuya YAMASHITA¹, <u>Masatsugu ODAKA²</u>, Ko-Ichiro SUGIYAMA³, Kensuke NAKAJIMA⁴, Masaki ISHIWATARI², Seiya NISHIZAWA⁵, Yoshiyuki O. Takahashi⁶, Yoshi-Yuki HAYASHI⁶ odakker@gfd-dennou.org

 ¹ Geospatial Information Authority of Japan, ² Hokkaido University, Japan, ³ Institute of Space and Astronautical Science, Japan, ⁴ Kyushu University, Japan, ⁵RIKEN AICS, ⁶ Kobe University, Japan

Warm climate and CO₂ ice cloud in Early Mars

- Major atmospheric component, CO₂, condenses, and the ice clouds are widely distributed.
- In Early Martian climate study, <u>stratiform cloud</u> is assumed.
 The nature of convective CO₂ cloud is not studied well.

Condensation convection of CO₂ and cloud type (Colaprete et al. 2003)

- Whether supersaturation is allowed or not is key point.
 - No: Stratiform cloud

Yes: Convective cloud

 However, circulation features and cloud distribution due to condesation convection of CO₂ are not examined.

- Results of Colaprete et al. (2003) is based on 1D cloud model.

The purpose of this study

- We investigate circulation features and cloud distribution associated with condensation convection of CO₂ under Early Mars condition
 - Use 2D cloud resolving numerical model, implemented CO₂
 ice cloud physics considering supersaturation
 - Perform long-term numerical simulations until statistical equilibrium states are reached.
- In this presentation...
 - We show dependencies of critical saturation ratio(Scr) on the circulation features and cloud distribution.
 - Scr is the saturation ratio for the onset of condensation.

Outline of numerical model

- Dynamics: 2D Quasi-compressible fluid
 - Pure CO₂ atmosphere and its condensation is considered
- CO₂ ice cloud microphysics (Tobie et al. 2003)
 - Diffusional growth, gravitational settling of cloud particles
 - Number density of condensation nuclei is constant
- Radiation
 - Only IR is considered, given as a horizontal uniform cooling
- Surface flux (Louis, 1979)
 - Estimated from bulk formula with fixed surface temperature
- Subgrid scale turbulence (Klemp and Wilhelmson, 1978)
 - Turbulent flux is calculated by using urbulent kinetic energy.

Governing equations

• Quasi-compressible equations(Klemp and Wilhelmson, 1978) and conservation equation for CO2 ice

Momentum equation:	$\frac{\partial \mathbf{u}}{\partial t} = -\mathbf{u} \bullet \nabla \mathbf{u} - C_p \overline{\theta} \nabla \Pi' + \mathbf{D}_{\mathbf{u}} + \frac{\theta'}{\overline{\theta}} \mathbf{g} - \frac{R}{p_0} \frac{\overline{\theta}}{\overline{\Pi}^{c_v/R}} \rho_s \mathbf{g}$							
Pressure equation:	$\frac{\partial \Pi'}{\partial t} = -\frac{\bar{c}_s^2}{C_p \bar{\rho} \bar{\theta}^2} \nabla \bullet \left(\bar{\rho} \bar{\theta} \mathbf{u}\right) + \frac{\bar{c}_s^2 L}{C_p^2 \bar{\rho} \bar{\theta}^2 \overline{\Pi}} M_{cond} - \frac{\bar{c}_s^2}{C_p \bar{\rho} \bar{\theta}} M_{cond}$							
Thermodynamic equation:	$\frac{\partial \theta'}{\partial t} = -\mathbf{u} \bullet \nabla \theta' - w \frac{\partial \overline{\theta}}{\partial z}$	$+\frac{1}{\overline{\Pi}}\left(\frac{LM_{cond}}{C_p\overline{\rho}}+Q_{dis}-\right)$	+Q	$D_{rad} + D_{\theta}$				
Conservation equation for CO2	$\frac{\partial \rho_s}{\partial t} = -\nabla \bullet \left(\rho_s \mathbf{u} \right) + M_{fall} + M_{cond} + D_{\rho_s}$			$\mathbf{u} = (u, w)$: Velocity, θ : Potential temperature, Π : The Exner function, ρ : Density of vapor, α : Density of cloud T : Temperature				
ice:		Condensation		c_s : Sound speed,				
		/evaporation		C_p : Specific heat at constant pressure,				
		term		L: Latent heat, M_{cond} : Condensation rate,				
			-	Q_{dis} : Dissipative heating rate,				
				Q_{rad} : Radiative heating rate,				
				$\mathbf{D}_{\mathbf{u}} = (D_u, D_w), D_{\theta}, D_{\rho_s}$: Turbulent diffusion term				
				$\mathbf{g} = (0, g)$: Gravitational accerelation				

CO₂ ice cloud microphysics

• Condensation/Evaporation rate (Tobie et al., 2003)

$$M_{cond} = \frac{4\pi r \rho N_* k R \theta^2 \Pi^2}{L^2} (S-1)$$

- For 1<S<Scr, condensation does not occur if cloud density is less than a threshold value
- We assume the value of threshold as 1.0⁻⁶ kg/m³
- Gravitational settling rate

$$M_{fall} = \frac{\partial}{\partial z} (\rho_s V_{term})$$
$$V_{term} = \left(1 + \frac{4}{3}K_n\right) \frac{2r^2 g\rho_I}{9\eta}$$

 $S = \frac{p}{p_*}: \text{Saturation ratio}$ $p: \text{Pressure} \quad p_*: \text{Saturation vapor pressure}$ $\rho: \text{Gas density} \quad \eta: \text{viscosity coefficien t}$ $N^*: \text{Number density of condensation nuclei}$ $r: \text{Radius of cloud particle} \quad \rho_I: \text{CO2 ice density}$ Kn: Knudsen number for cloud particle $k: \text{Thermal diffusion coefficien t} \quad R: \text{Gas constant}$

Setup of experiments

- Domain size:
 - 100km in horizontal direction (grid spacing: 500m)
 - 80km in vertical direction (grid spacing: 400m)
- Initial temperature and cooling profile
 - Based on Kasting (1991)

- Critical saturation ratio (Scr): 1.0, 1.35 (Glandorf et al., 2002)
- Number density of condensation nuclei (N*): 5.0x10⁴, 5.0x10⁶, 5.0x10⁸ /kg
 (Tobie et al., 2003: Forget et al., 2013)

Results

Parameter dependence: time evolution of total cloud mass

Parameter dependence: time evolotion of total kinetic energy

Scr = 1.0

Circulation features and cloud distribution: <u>Scr=1.0</u> (100 days)

Circulation features and cloud distribution: <u>Scr=1.35</u> (143 days)

Dependency of number density of condensation nuclei: Scr=1.35

Estimation of radius of cloud particles and cloud optical depth

S_{cr}	$N_{*} (kg^{-1})$	radius of cloud particles(μ m)			optical depth			
		all	non cond.	cond.	all	non cond.	cond.	
1.0	5.0×10^4	35			5			
1.0	5.0×10^6	15	—	—	70	—	—	
1.0	5.0×10^8	5	_	—	1500			
1.35	5.0×10^4	5	5	30	1	0.5	10	
1.35	5.0×10^6	2	0.1	10	15	0.01	100	
1.35	5.0×10^8	5	—	—	1500	—		

- Suitable combination of cloud particle radius and optical depth for "scattering green house effect" does not occur.
 - The estimation of optical depth is following to Petty (2006)
 - The scattering green house effect is effective when cloud particle radius is 10 μm and its optical depth is about 10.

Concluding remarks

- Circulation features and cloud distributions associated with condensation convection of CO₂ vary greatly with the values of Scr.
- Scr=1.0: No supersaturation case
 - Condensation occurs continuously
 - <u>Stratiform clouds</u> is generated by gravity wave
- Scr=1.35: Supersaturation case
 - Non-condensation and condensation periods occur alternately
 - In condensation periods, <u>convective clouds</u> forms
- Note: In any cases, suitable combination of cloud particle radius and optical depth for scattering green house effect does not occur.

This study is submitted to Journal of the Atmospheric Sciences.

Appendices

Horizontal mean cloud distribution

Dependency of number density of condensation nuclei:

Total cloud mass

Total kinetic energy

Total kinetic enregy and cloud mass

Vertical profiles of cloud mass density in no supersaturation case

- Vertical profiles of cloud mass density is determined by
 - In the Uppper part: balances between radiative cooling and condensation heating, and condensation rate and gravitational setteling (red dot line)
 - In the lower part: conservation of liquid water static energy (blue dush line)