Mars Global Climate Model (GCM)

F. Forget, E. Millour, T. Navarro, A. Pottier, L. Montabone, A. Spiga, A. Colaitis, J.-B. Madeleine, T. Bertrand, M. Vals *LMD, France*F. Lefèvre, J.-Y. Chaufray, F. Montmessin, *LATMOS, France*F. Gonzalez-Galindo, M.-A. Lopez-Valverde, IAA, Spain
S. Lewis, *Open University*, P. Read, *AOPP, UK* and the MCD/GCM team

The LMD Mars Global Climate Model

- 1st version developped in the early 1990s (Hourdin et al.
 1993) ⇒ Reference publication Forget et al. (1999)
- Now applied to all aspect of Mars atmospheric Sciences: Toward a "Mars System Model"

The LMD/IPSL « Mars system simulator »

The LMD Mars Global Climate Model

- 1st version developped in the early 1990s (Hourdin et al.
 1993) ⇒ Reference publication Forget et al. (1999)
- Now applied to all aspect of Mars atmospheric Sciences: Toward a "Mars System Model"
- The GCM is constantly improved.
 - •The current version is the outcome of 8 years of intense development to renew the model...
 - Validation with several datasets

⇒Used to produce a new Mars Climate Database version 5 (see talk on Thursday by Ehouarn Millour)

Basic characteristics of the Mars Global Climate Model :

1) LMDZ final Dynamical Core (Grid point Model)

- 3) Subgrid scale dynamics
- Turbulence: Mellor and Yamada 2.5 Scheme
- Convection : see below
- Gravity waves (orographic) + low level drag: Prametrisation of impact on the main flow

2) Radiative transfer:

- TIR CO2 wide band model (Hourdin 1991) + NLTE model (Lopez-Valverde 2011)
- NIR CO2 (NLTE)
- EUV absorption
- Aerosols: **To**on et al. 1989

6) Dust transport and distribution : see below

- 5) Volatile:
 - CO2 cycle: see below
 - H2 O cycle: see below

4) Surface and subsurface thermal balance

Forget and Lebonnois (2013) In "ComparativeClimatology of Terrestrial Planets" book, Univ of Arizona press 2013

Improved Dynamics, Convection and Turbulence Model

New convective thermal models to replace "simplistic" convective adjustment.
→ Subgrid scale gustiness
Improved thermal drag coef.
(Colaitis et al. 2012)

New Roughness Length "z₀" Map derived from Extended Martian Rock Abundance Data (Hebrard et al. 2011)

炭酸ガスの氷の層

(mosaic of the CO2 ice seasonal northern polar cap) in spring

Improved CO₂ cycle

Surface condensation of CO2

Near Surface enrichment of other gases

Argon enhancement observed by Mars Oddyssey GRS

Sprague et al. Granada 2006

Computation In a discretized world (GCM)

• In « hyprid coordinate » $\sigma_{N+1/2}$ $\sigma = p/ps \rightarrow p$

- ⇒ each model layer is define by its boundary
 - $\sigma_{l+1/2} \sigma_{l-1/2}$

Ν

Surface condensation of CO2

Near Surface enrichment of other gases

Mixing and convection induced by non-condensible gas enrichment

- $CO_2: m = 44.0E-3 \text{ kg mol-1}$
- Non-condensible gas (N₂, Ar) are lighter:

 \Rightarrow *m* = 32.37E-3 kg mol -1 (*Hess*, 1979)

- Induce convection near the surface !
- Density changes ($\rho = Pm/(8.314 T)$) :

 Δm gradient equivalent to a temperature gradient $\Delta T = m/T \Delta m$

Argon column averaged mixing ratio (%)

sol = 0.0 N. Spring

Observation of CO by CRISM (ppm) (Mike Smith 2008)

Observations

Model

Dust observed by India Mars Orbiter Mangalyaan mission (seen from an altitude of 8449 km)

火星大気に浮遊するちり

DUST SCENARIOS Zonal mean of reconstructed column dust opacities for martian year 24-31

0.075 0.150 0.225 0.300 0.375 0.450 0.525 0.600 0.675 0.750 0.825 0.900 0.975 IP absorption CDOD @ 610 Pa

Montabone et al. 2015 (Icarus)

Improved "dust model" to simulate observed Martian years (MY24 – MY31)

Constant global lifting

(Madeleine et al. 2011)

火星大気は水を水蒸気や雲の形で運搬する

NORTHERN SUMMER

Solar Flux

Sublimation

Transport

Clouds

Condensation

Modelling water cycle and clouds

Sublimation

EARLY GCMS SIMULATION of Mars water cycle: 1) water vapor

OBSERVATION

(TES, Smith 2007)

MODEL (LMD GCM)

Montmessin et al. 2004, Forget 2008

Did these « simple » GCM simulations explain the entire water cycle ? No ! :

- Unrealistic temperatures => one must take into account the radiative effect of water ice clouds
- Unrealistic water vapor vertical distribution (e.g. Fouchet et al. 2007; Maltagliatti et al. 2012)

⇒ Need for improved cloud microphysic

Temperature without active clouds $(L_s = 90^\circ)$

Madeleine et al. (2011)

Temperature without active clouds $(L_s = 90^\circ)$

Temperature when clouds are active $(L_s = 90^\circ)$

Radiatively active Water ice clouds in a GCM

Illustration off the difficulties ; from Thomas Navarro

Water vapor seasonal cycle

(Martian Year 26)

MGS/TES Observations

GCM simulations without microphysics

Alizee pottier

Water vapor seasonal cycle

(Martian Year 26)

MGS/TES Observations

GCM simulations without microphysics

GCM simulations with microphysics

Figure by Alizee Pottier

High resolution (1° x1°) water cycle sims

(Pottier et al. 2015)

5.00

4.00

3.00

2.00

1.00

0.00

Comparison with Mars Climate Sounder

- Comparison with Binned Mars Climate Sounder data (Luca Montabone)
- Bin sizes: Ls: 5° lat: 3° lon 7.5°
- Today : Martian Year 29

Zonal mean temperatures

1/2 (Tday + Tnight)

Dust detached layers observed by India Mars Orbiter Mangalyaan mission (seen from an altitude of 8449 km)

Detached dust layer necessary to explain MCS observed thermal structure

Dust distribution predicted by the GCM

from MCS temperature observations with an ensemble of **GCM** simulations Ls=310 to Ls=320 MY29.

(LETKF data assimilation scheme)

(Navarro et al. 2014)
What is the process forming detached dust layers ?

1) Dust enrichment below dust scavenging clouds (Navarro et al. 2014)

Modelling dust scavenging by ice in LMD GCM

Zonal mean dust mixing ratio for simulations with (right) and without (left) scavenging by water ice cloud, averaged between Ls=90° and Ls=120° (presence of numerous water ice clouds during this period). No significant difference was found.

Navarro et al. 2014; Bertrand et al. 2014

What is the process forming detached dust layers ?

2) Direct transport of dust from the boundary layer to the mid atmosphere by "rocket dust storms" (*Spiga et al. 2013*) & Local topography circulation

Rocket dust storm : evolution of a local dust storm as simulated by the LMD Mesoscale Model

Spiga et al. 2013. Model Resolution = 7 km

Parameterizing rocket dust storm in LMD Global Climate Model (GCM)

Evolution of the Martian Climate

Variations of Obliquity on Mars

Laskar and Robutel (1993), Touma and Wisdom (1993), Laskar (2004)

Ice accumulation rate (mm/yr) high resolution simulation (2°x2°)

Obliquity = 45°, **Excentricity = 0**, **Dust Opacity =0.2**

Forget et al. Science 311, p368, 2006

•Fan shaped deposits, drop moraines characteristic of cold based glaciers.

Rock glaciers

Lucchitta 1981, Head et al. 2003, Shean et al. 2005, 2007, Head et al. 2005, Kadish et al. 2008, Schon and Head 2012

The format accumulatic^{20°} very high re

Forget et al. 2006: Obliquity = 4

The climates of planet Mars controlled by a chaotic obliquity

Forget et al. 2008

LMD GCM (with radiatively active clouds)

Present day Mars (obliquity = 25.2°)

Same Mars but with obliquity = 35°

Radiatively active clouds warm the atmosphere

- ⇒ Much more intense water cycle (more water vapor)
- ⇒ More clouds (positive feedback)
- ⇒ More precipitations !

Obliquity = 35° N polar cap

Madeleine et al. GRL 2014

Radiatively active clouds simulations, obliquity = 35° , excentricity = 0.1

Madeleine et al. GRL 2014

Evolution of the Martian Climate

MARS : Warrego Vallis 150 km

EARTH

(Yemen ; same scale)

centimeters10203040

50

0

Curiosity, Gale Crater, 07/2014

A 3D Global Climate Model (GCM) for early Mars

- LMDZ grid point dynamical core,
 - o 64x48 or 32x32 grid points
 - o 15 layers
- New radiative transfer core:
 - Correlated-k for the gaseous absorption
 - Toon et al. (1989) twostream method for the aerosols
- Simple parametrisation of CO2 cloud microphysics : condensation, nucleation, transport, sedimentation (fixed CCN distribution, but variable mean cloud particle sizes)

Global mean surface temperature (K)

Forget et al. 2012, Wordswoth et al. 2013, Kerber et al. 2015

Forget et al. 2013

The Icy Highland Scenario

Map of Modeled Annual snow ice accumulation P=0.6 bar, ob=41.8° (Wordsworth et al. 2015)

Valley Network drainage density (Hynek et al.,2010)

