Our model development activity in RIKEN AICS

- introduction of SCALE and SCALE-LES-

S. Nishizawa, H. Yashiro, Y. Sato, T. Yamaura, S. Aadachi, R. Yoshida, H. Tomita and Team SCALE RIKEN Advanced Institute for Computational Science

Introduction

- Meteorological simulation is *not* a first-principle simulation
 - based on many empirical rules.
 - tones of tunable switches
 - Validity of simulations can be hardly confirmed especially
 - for paleo/future climate, or other planets
 - with higher resolution

Comparison plays important role for reliability of models. Diversity of meteorological models is really important.

- Meteorological simulation models are getting complex more and more.
 - Each process is more sophisticated
 - Number of included processes have become increasing
 - Programing code have become complex due to complex computer systems

Limitation of human and temporal resources is serious

- As a possible solution of the problems, we have develop a framework (library and environment) to develop models.
 - for model developers
 - Meteorological scientists could focus on physical performance
 - Computational issues are mainly handled by the framework
 - unify APIs
 - switching schemes or exchange schemes between models could become easier
 - comparison could become easier

SCALE

SCALE (Scalable Computing for Advanced Library and Environment)

- from x86 PCs to next generation super computers
- Collaborate with computer scientists
- Open source with the 2 clause BSD license
 - http://scale.aics.riken.jp/

Components

- model components (unified API)
 - dynamical cores: HE-VE, HE-VI, HI-VI
 - physics: microphysics, turbulence, radiation, surface flux
 - misc: I/O, communication, logger, timer etc
- documents
 - model description
 - knowledge repository (future work)
- test cases
 - component unit test
 - standard benchmarks
- pre- and post-processing tools (future work)
 - parallel handling

We started to collaborate with other model developer groups (JMA/MRI, MIROC, NICAM, CReSS, AFES, MSSG, GAIA, MATSIRO, DENNOU)

SCALE-LES

A meteorological Large-Eddy simulation model using SCALE

- An application of SCALE
- To perform wide domain and high resolution simulation
 - O(10-100)km² domain with O(10-100)m resolution; mesoscale LES

SCALE-LES model description

- Prognostic variables:
 - density, momentums, mass-weighted potential temperature, mass concentration of tracers
- Dynamical core:
 - governing equation: fully compressive equation
 - temporal integration:
 - full explicit (HE-VE) and implicit (HE-VI, HI-VI) schemes
 - 3 steps RK scheme
 - spatial difference:
 - 4th order central difference for advection
 - 2nd order central difference for terms related with acoustic wave
 - grid : Arakawa-C grid
 - topography: terrain following, thin wall (testing)
 - tracer advection: CWC + FCT
 - numerical filter: 4th or 8th order hyper diffusion

- Physical processes
 - Microphysics
 - single moment 3 category bulk (Kessler 1969)
 - single moment 6 category bulk (Tomita 2008)
 - double moment 6 category bulk (Seiki and Nakajima 2014)
 - bin (Suzuki et al. 2010)
 - super droplet (Shima 2009; testing)
 - Turbulence
 - Smagorinsky-Lilly type SGS turbulence
 - Mellar-Yamada Nakanishi-Nino level 2.5 (Nakanishi and Niino 2009)
 - Radiation
 - MstrnX (Sekiguchi and Nakajima 2008)
 - Surface flux
 - Louise type (Uno et al. 1995)
 - Beljaars (1994)
 - Land model
 - multilayer becket model
 - Urban canopy
 - single layer canopy (Kusaka 2010)

computational performance

- performance @ K computer
 - above 10% of peak performance (dynamical core)
 - 5~8% for whole simulation (including I/O)
 - about 100% weak scaling to full system (663,552 cores)

- For efficient development
 - Using git for version controlling
 - Using redmine for project management
 - Using CI for early finding bugs
 - Run all the tests at each commit automatically

Dynamical core test

Density current test case (Straka et al. 1993)

Straka et al. (1993)

- density current without physical diffusion/viscosity
 - but with numerical diffusion
- 51.2 km x 6.4 km 2-D domain
- 1.5625 m resolution (134M grids)
- 900 sec integration

This implies that

higher resolution experiment is not always better than lower one without appropriate treatment (parameterization).

Cloud microphysics and turbulence test

DYCOMS-II RF01 case (Stratocumulus without rain) Experimental setup is based on Stevens et al. (2005)

- Domain size: 3.36km x 3.36km x 1.5 km(3D)
- Resolution: dx=dy=35, dz=5m
- Calculation time : 4 hour (dt=0.006s)
- Cloud physics : 2-moment bulk [without rain and sedimentation]
- Radiation : Parameterization of Stevens et al.
 (2005)
- Surface flux : Constant value

Mixing ratio of water contents.

Temporal evolution

Current science targets with SCALE-LES

- Shallow clouds
 - open/close stratocumulus
- Very short range heavy rain forecast in Kansai (talk by Dr. Miyoshi)
 - big data assimilation
- Future heavy rainfall in Kobe/Hyogo
- Martian planetary boundary layer

Summary

- Develop a framework for meteorological model development
 - Meteorologists could focus on physical performance against complex future computer systems.
 - We try to achieve well computational performance by R&D with computer scientists.
 - Collaboration with other model developing groups would be enhanced.
- Wide-domain high-resolution simulations (mesoscale LES)
 - SCALE-LES is developed as an application of SCALE.
 - Mesoscale LESs are now in progress.
 - For future global LES (with icosahedral grid system)