May 11, 2015, Japanese-French model studies of planetary atmospheres, CPS

Model development in GFD Dennou Club

Yoshiyuki O. Takahashi, collaborators in GFD Dennou Club

dcmodel project

http://www.gfd-dennou.org/library/dcmodel/

Development of models and tools for study and education of a variety of geophysical fluid,

- planetary atmospheres, ocean & climate,
- planetary cores,
- idealized systems of above-mentioned fluid.

Difficulty in numerical studies

- Current simulation models (climate models) are very complex.
- It is difficult for us to understand what is going on in simulations.
 - It is difficult
 - to check validity of the model,
 - to understand the code.
 - If we use a comprehensive model, which reproduce the reality, the use of the model is almost the same as (high density) observation.
- "The Gap between Simulation and Understanding in Climate Modeling" (Held, 2005)

Target features of models/tools development

- Models and programs that anyone can use
 - Anyone can freely download, edit, and redistribute them.
 - Anyone can perform the same experiments shown in papers.
- Models with a variety of complexities.
 - Comparison between the results from simple (conceptual) model and those from complex model enable us to understand the phenomena.
- Models which are written in the same "style"
 - Common
 - variable naming rule,
 - Input/Output library
 - data format, NetCDF
 - spectral transform library.
 - These features would enable us to use several models, easily.
- Models that can run on a variety of computers
 - One can run a model on a supercomputer as well as a PC.
- Models with documents
 - Documents help education.

dcmodel tool/model line-up

- Input/Output library
 - gtool5
- Spectral transformation library
 - ispack
 - spml (wrapper of ispack)
- Models
 - spmodel sample programs
 - models of spectral transformation method
 - deepconv
 - cloud resolving model
 - DCPAM
 - general circulation model
- Utility for documentation
 - rdoc-f95
- Those tools/models can be downloaded from GFD Dennou Club web site http://www.gfd-dennou.org/.

Hierarchy of models developed in dcmodel project

gtool5

http://www.gfd-dennou.org/library/gtool/gtool5.htm

- Input/Output library written in Fortran90
- Design for easy input/output of data with self-descriptive format NetCDF
 - Metadata can be put on the data with a few steps
 - Common use in multiple models
 - This may enable us to use multiple models easily.

– NetCDF:

http://www.unidata.ucar.edu/software/netcdf/

ispack/spml

- ispack: http://www.gfd-dennou.org/library/ispack/
 - Spectral transformation library written in Fortran77
 - FFT in ispack is the fastest over the world on Intel processors
- **spml:** http://www.gfd-dennou.org/library/spmodel/
 - Fortran90 wrapper library of ispack
 - Design for "Program like mathematical expressions"
 - Systematic naming rules
 - Use of Fortran90 array-valued functions

spml naming rules and library functions

- Naming rules for variables
 - Dimensions are represented with identifiers
 - (dimension identifiers)_(variable name)
 - Examples:
 - x_Temp : x 1D temperature
 - xyz_Temp : xyz 3D temperature
 - e_Temp : wavenumber space 1D temperature
 - w_Press : spherical harmonics pressure
- Library functions
 - Examples of functions:
 - e_g(x_Data) : Conversion from grid to spectral data
 - g_e(e_Data) : Conversion from spectral to grid data
 - e_Dx_e(e_Data) : Differentiation of spectral data with x
 - Example of combination of functions:
 - x_Data2 = g_e(e_Dx_e(e_g(x_Data1)))

Example of program using spml 1

Example : 1D KdV equation 1D KdV equation

$$\frac{\partial \varsigma}{\partial t} = -\varsigma \frac{\partial \varsigma}{\partial x} - \frac{\partial^3 \varsigma}{\partial x^3},$$

is transformed to

$$\widetilde{\varsigma}_{m}^{\tau+1} = \widetilde{\varsigma}_{m}^{\tau} + \left(\Delta t\right) \times \left\{ -\left[\varsigma \frac{\partial \varsigma}{\partial x}\right]_{m}^{\tau} - \left[\frac{\partial^{3} \varsigma}{\partial x^{3}}\right]_{m}^{\tau} \right\},\$$

where the Euler scheme is applied to time derivative and

$$\widetilde{\varsigma}_{m}(t) = \frac{1}{L} \int_{0}^{L} \varsigma(x,t) e^{2\pi i m x/L} dx, \quad \varsigma(x,t) = \sum_{m} \widetilde{\varsigma}_{m}(t) e^{-2\pi i m x/L}$$

Example of program using spml 2

By the use of spml, the discretized equation shown in a previous slide is coded as follows:

$$\widetilde{\varsigma}_{m}^{\tau+1} = \widetilde{\varsigma}_{m}^{\tau} + \left(\Delta t\right) \times \left\{ -\left[\varsigma \frac{\partial \varsigma}{\partial x}\right]_{m}^{\tau} - \left[\frac{\partial^{3} \varsigma}{\partial x^{3}}\right]_{m}^{\tau} \right\},\$$

spmodel (sample programs)

- http://www.gfd-dennou.org/library/spmodel/
- Sample programs using spml for various Geophysical Fluid Dynamics problems
 - Advection eq., Shallow water eq., Boussinesq eq., and so on.
- Purpose
 - Understanding Geophysical Fluid Dynamics
 - Understanding basic properties of geophysical fluid, such atmosphere, planetary internal fluid, and so on.
 - Easy connection of our understanding on GFD from mathematical expressions to numerical experiments

Examples of spmodel experiments (http://www.gfd-dennou.org/library/spmodel/gallery/index.htm.en)

Density current

density [g/cm3]

11.60 1.60

glool4/Fortran90

date: 3/ 8/26 page: 1

Convection in a spherical shell (MHD Bousinessq eq.)

Another example for atmosphere of giant planets will be shown by Takehiro-san on Thursday.

Rossby wave on a sphere

vorticity [1/s]

CONTOUR INTERVAL = 2,500E-01

deepconv

- http://www.gfd-dennou.org/library/deepconv/
- Cloud resolving model for planetary atmospheres
 - 2D / 3D quasi-compressible eq.
- Purpose
 - Understanding of cloud convection in a various planetary atmospheres
- Brief description
 - Dynamics
 - Quasi-compressible eq.
 - Some terms except advection are linearized.
 - Turbulent mixing
 - 1.5 order closure (Klemp and Wilhelmson, 1978)
 - Surface flux based on bulk method
 - Cloud micro-physics
 - "warm rain" parameterization (Kessler, 1969; Nakajima, 1998)
 - Simple thermal forcing

Examples of deepconv experiments

Idealized thermal experiment

Results of Jupiter and ancient Mars experiments will be shown by Sugiyama-san and Odaka-san, respectively.

GPD

DCPAM

- http://www.gfd-dennou.org/library/dcpam/
- General Circulation model for planetary atmospheres

- Brief description
 - Dynamics
 - Primitive eq.
 - Vertical hydrostatic equilibrium
 - Radiation
 - Earth model
 - Mars model
 - grey atmosphere model
 - New model is being developed by Onishi-san.
 - Turbulent mixing
 - Cumulus convection
 - Soil model, Bucket model

Examples of DCPAM experiments 1: Venus, Earth, Mars

Earth

CONTOUR INTERVAL = 2.000E+01

Color code and vertical axes are different in three figures.

Examples of DCPAM experiments 2: Idealized calculation/Virtual planets

- Virtual planets
 - Aqua-planet
 - Tidally-locked planet
 - Results will be give by Hayashi-sensei.
- Idealized calculation
 - inviscid calculation
 - baroclinic wave calculation (Polvani et al., 2004)
 - dynamical core test (Held and Suarez, 1994)

Tidally-locked planet

Tiime mean Surface temperature, T42L22 (Ishiwatari et al.)

Baroclinic wave

Temperature at lowest level, T341L20

Examples of DCPAM experiments 3: 1, 2, 3D calculation of Mars atmosphere

Examples of DCPAM experiments 4: 1D experiment of tropical convection

- Intercomparison of Earth's tropical observation campaign 1D experiment
 - TWP-ICE SCM intercomparison (Davies et al., 2013)

Relative humidity

(×1E4 Pa)

dcmodel documentation

Summary

- We are working on the development of tools and models for research and education of a variety of geophysical fluids, including planetary atmospheres.
 - Anyone can use the model/programs.
 - Hierarchical models
 - Documentation (hopefully)
- Line-up
 - gtool5
 - ispack / spml (wrapper program of ispack)
 - spmodel sample programs
 - deepconv (cloud resolving model)
 - DCPAM (general circulation model)
 - rdoc-f95 (documentation utility)

