## For Brain storming: Limb fitting Topics

Why we use Ellipse fitting in Akatuski L3 procedure



Toru Kouyama AIST WTK@ISAS, 2015.04.25

### Cloud tracking procedure

Venus Express/VMC





Longitude

- 1. Projecting original image onto latitude-longitude coordinate map
- 2.Tracking cloud features

Cloud tracking supposes each image has correct navigation information and correct geometry information.



# Cloud tracking requires very high precision geometry information

Recent satellites have very good accurate navigation information, but...

#### Venus Express:

Satellite attitude uncertainty: 0.02° (Bertaux et al., 2007)

0.02° ~ 1pixel/VMC

 $=> 20-40 \text{ km error} => 5-10 \text{ m s}^{-1} / \Delta t = 1 \text{ hour}$ 

#### Akatuski:

Expected to be worse than Venus Express

Limb fitting procedure is a typical approach to improve the accuracy of the attitude information.

Requirement: Sub-pixel level.





#### Venus silhouette is Circle?



#### Venus silhouette is Circle?



It looks like circle

#### Venus silhouette is Circle?



Strictly speaking, NO. It is ellipse but with very low eccentricity. (even if we consider Venus (including clouds) as a perfect sphere object)







The main point of Limb fitting scheme for Akatsuki L3 product

**Not** Circle fitting





Ellipse fitting with several constraint conditions



In particular

- tilting angle
- Ratio of semi-major and semi-minor lengths



In ellipse case:

a: semi-major b: semi-minor

$$\gamma = \frac{b}{a} = \sqrt{\cos^2 \theta_V - \sin^2 \theta_V \tan^2 \theta}.$$

$$\theta = \sin \tau - 1 RV/D$$



For ground-based observation,  $\gamma$  can be considered as "1" due to both  $\theta$  and  $\theta_{v}$  are almost 0.

Same as Gliileo observation case.

But in case of Venus Express and Akatsuki,  $\gamma$  can cause several pixel difference between semi-major and semi-minor length.

#### 6 parameters:

$$Ax_{\alpha}^{2} + 2Bx_{\alpha}y_{\alpha} + Cy_{\alpha}^{2} + 2f_{0}(Dx_{\alpha} + Ey_{\alpha}) + f_{0}^{2}F = 0$$
.

⇔ 3 parameters in circle fitting case



[Ogoahar et al., 2012]

Ellipse fitting using maximum likelihood procedure (Kanatani and Sugaya, 2007) < Extended-FNS method>

#### Constraint conditions:

- Tilting angle of ellipse
- Ratio of semi-major and semi-minor lengths

#### Performance:



We can determine Venus center location with 0.1 pixel level from the result of using simulation images.

\*E-FNS method does not provide fitting error directly, so we conducted practical estimation usings simple simulation images.



Displacement between each limb poin location and fitted ellipse

[Ogohara et al., 2012]







$$\gamma = \frac{b}{a} = \sqrt{\cos^2 \theta_V - \sin^2 \theta_V \tan^2 \theta}.$$

Although  $\theta$  will be small in typical observation case, the ellipse issue should be considered due to  $\theta$ v effect. ( $\theta$ v: 0 – 6 degrees)

Even if downlink only a specified tile, the location in original image frame should be included in file header.



#### History of implementation of ellipse fitting:

Good example of successful team activity

~2010 spring

Kouyama: awoke Venus shape is not circle, but ellipse

2010 spring

$$\gamma = \frac{b}{a} = \sqrt{\cos^2 \theta_V - \sin^2 \theta_V \tan^2 \theta}.$$

Yamada (L2 member): solved the relationship between a & b.

Takagi & Ogohara: found E-FNS method and applied it to L3 program

2010 summer

Kahimura: solved constraint conditions and converted them into appropriate equation forms for E-FNS method

2010 winter/2011 spring: we submitted a paper (-> Ogoahara et al., 2012)







