# IR Cloud Tracking in Venus

### Javier Peralta, PhD



# Spatial missions to Venus



# Venus flybys towards other planets







### Venus: slow/fast planet/atmosphere rotation



## Equations for quickly/slowly rotating planets



### Zonal Circulation of Venus Atmosphere

Venus is dominated by strong westward winds, which are 60 times faster than the solid planet at the clouds' tops.





# Meridional Circulation of Venus Atmosphere

Venus's <u>troposhere</u> "seems" to consist in a Hadley-cell circulation interrupted by the polar vortices at both poles.

Venus's *mesosphere* is dominated by Subsolar-to-Antisolar (SSAA) circulation.





How is superrotation generated/maintained? How is energy transported?

Surface torque? Solar tides? Eddies? Waves?

After decades of research, no Venus GCM works properly yet !!

First Column: Spectral models Second Column: Finite Difference models Different results are also obtained depending on:

- Horizontal/Vertical resolution
- Topography
- Upper boundary layer
- Initial conditions



#### ZONAL WINDS

- Vertical profiles only for several entry coordinates.
- A few vertical levels allow cloud tracking.
- Cloud levels sense variable altitude.
- Above clouds:
  - Doppler measurements are sparse.
  - Radiation times difficult tracking of features.
  - Does Venus thermal wind equation really work?

V12

• SOUNDER

PV BUS® **V8●** 

DAY

- Below clouds: only "in situ" measurements.
- GCMs: not trustable to fill gaps



#### **MERIDIONAL WINDS**

MOIION

P

COMPONENT

MERIDIONAL

HEAN

Latitude

-3

15

10

s

0

-10

-15



- Upper branch of Hadley cell at cloud tops?
- Solar Tides affect Latitudes 70°-85°:
  - Poleward Wind in Dayside. •
  - Equatorward Wind in Nightside •



10

0

2

50.

15

10

5

0

-5

-10

-15

12 14 16 18 20 22 24

8

Local Time (hours)

6

LATITUDE (VENUS CENTERED)

#### **VERTICAL WINDS**

- Only "in situ" (probes and VEGA balloons).
- Too small to be measured with Doppler. Expected to be higher at poles.
- We have not *indirect methods* as the ones used for geostrophic regimes (*Omega* equation).
- Strongest Divergence is found at cloud tops, tropical latitudes and between 13h-14h.
- Recently suggested that the "Y" feature causes strong vertical acceleration at height where zonal wind peaks (Peralta, 2015).







#### MECHANISMS FOR CREATING/TRASPORTING/ DISSIPATING MOMENTUM & ENERGY:

- Planetary and Mesoscale waves are frequently apparent in Venus images and must be tracked to characterize them.
- High-precision winds need to be obtained in order to decompose measurements into these components:
  - Solar Tides
  - Transient Waves (if any)
  - Eddies/Turbulence
- A complete **Reference Atmosphere** for Venus **Winds** is yet to be done (crucial for GCMs).



# The more we know about the polar vortex, the less...

- Rapidly changing Morphology ...
- Morphology and Dynamics *uncoupled*?
- Polar circulation can be:
  - Solenoid
  - Convergent/Divergent

- Sometimes, the vortex moves as if it were a <u>merry-go-round</u> ...

- ... and others it moves <u>*chaotically*</u> and apparently uncoupled in altitude.





## How can we measure the winds on Venus?



### Remote sensing of the planet Venus

Depending on the wavelength with which we observe Venus, we will be able to sense different vertical levels of its atmosphere.



# Different wavelengths: 3D view of Venus' winds



#### Zonal Wind Profile measured for images taken with a filter of \$800nm



# Venus' levels for nadir images (VEx & Akatsuki)



### Venus Express: Instruments to measure Winds



# Techniques for Tracking Atmospheric features (I)

#### 1. <u>TEMPLATE MATCHING</u>.

- 1. Sum of Absolute Differences (SAD)
- 2. Sum of Square Differences (SSD)
- 3. Cross-Correlation (CC)
- 2. <u>OPTICAL FLOW</u>. Calculate the motion using the differential change of Intensity at every pixel position for 2 images taken at times t and t+ $\delta$ t:  $I(x,y,z,t) = I(x+\delta x, y+\delta y, z+\delta z, t+\delta t).$

#### The most known are:

- 1. Phase-Correlation.
- 2. Lucas-Kanade method.
- 3. Horn Schunk method.
- 4. ..

Most used in Solar System Planets, but not for the Earth:

- Sensitive to noise.
- Slow algorithm
- Fails in pairs of images with different bits, spatial resolution,



# Techniques for Tracking Atmospheric features (II)

#### 1. Manual Tracking.

- 1. Trustable when experience adquired.
- 2. Avoid outliers as tracers.
- 3. Very slow. Demands learning stage.

#### 2. Automatic Tracking.

- Blind: includes outliers and bad measurements.
- 2. Hundreds times more measurements.
- 3. Fastest method.

#### 3. Semi-Automatic Tracking.

- 1. Human operator accepts/rejects each automatic measurement.
- 2. High number of measurements in a short time.

$$u = (R + H) \cdot \cos \phi \cdot \frac{\Delta \lambda}{\Delta t}$$
$$v = (R + H) \cdot \frac{\Delta \phi}{\Delta t}$$





# Planetary Laboratory for Image Analysis (PLIA)



# Take a breath! This is Phase-Correlation

The **Phase Correlation** is a "frequency domain" approach to determine the relative translation movement between 2 images.

The traslation is estimated determining the position of the maximum peak present in the inverse Fourier Transform of the Normalized Cross Correlation (NCS).



#### **Demostration:**

Provided two images (ia and ib), one the translated version of the other,

$$i_b(x,y) \stackrel{\text{def}}{=} i_a(x - \Delta x, y - \Delta y)$$

The Fourier Transform will be,

$$\mathbf{I}_b(u,v) = \mathbf{I}_a(u,v)e^{-2\pi i (\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}$$

Then we calculate the Normalized Cross Correlation (NCS) to factor out the phase difference.

$$NCS = \frac{\mathbf{I}_{a}\mathbf{I}_{b}^{*}}{|\mathbf{I}_{a}\mathbf{I}_{b}^{*}|} = \frac{\mathbf{I}_{a}\mathbf{I}_{a}^{*}e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}}{|\mathbf{I}_{a}\mathbf{I}_{a}^{*}e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}|} = \frac{\mathbf{I}_{a}\mathbf{I}_{a}^{*}e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}}{|\mathbf{I}_{a}\mathbf{I}_{a}^{*}|} = e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}$$

And this results in a single peak at  $(\Delta x, \Delta y)$  after an inverse Fourier Transform,

$$PC = \mathcal{F}^{-1}\{NCS\} = \delta(x - \Delta x, y - \Delta y)$$

# Take a breath! This is Phase-Correlation

Preliminary Cloud Tracking tests in infrared VIRTIS-M images with **Phase Correlation** are PROMISING!!

And also with ultraviolet VMC images!!





# Scattered Sunlight: cloud features

#### The upper cloud layer of Venus can be sensed with three wavelengths, as shown by Hueso (2015):

- UV (360-400 nm) sensing 65-70 km. High contrast features at the cloud top. VMC better in contrast and coverage. VIRTIS-M better spatial resolution.
- VIS (570-680 nm) sensing 58-64 km. Low contrast features different to tops. Slight better contrasted than in NIR.
- **3.** NIR (900–955 nm) sensing 58–64 km. Low contrast features different to tops.







# Scattered Sunlight: wind results from VIRTIS-M

#### Some interesting results about winds from scattered sunlight images (Hueso et al. 2015):

- Winds at the cloud tops (UV) is stronger, while VIS and NIR images provide similar results.
- Right below the cloud tops, zonal winds can suffer strong variations in short times (days).
- Zonal winds at the cloud tops have a clear dependence with the local time.
- Confirming previous results from VMC (Khatuntsev, 2013; Kouyama, 2013), a long-time variation of the zonal winds is also found at the cloud tops with VIRTIS-M.



# Scattered Sunlight: VEx and Galileo compared



Zonal Wind Profile measured for images taken with a filter of 380 nm.



# Cloud Opacity to Surface Radiation: cloud features

- The lower clouds can be sensed in the nightside of Venus using the Infrared wavelengths 1.74 and 2.30 µm.
- The vertical level seen ranges 44-48 km.
- Features caused by the different cloud opacity to the thermal radiation from the surface.
  These patterns are the easiest to track.
- Cloud features have different scales at different latitudes. For example, latitudes lower than 40° frequently exhibit patchy patterns.

Night-side IR (1.74 µm)

Day - side UV (380 nm)



# Cloud Opacity to Surface Radiation: wind results

#### Some interesting results about winds from images of nightside lower clouds (Hueso et al. 2012):

- Winds at the lower cloud (1.74 & 2.30 µm) have magnitudes similar to those measured with scattered sunlight (VIS and NIR images).
- No clear meridional circulation can be detected.
- Nor zonal or meridional winds seem to depend on the local time.
- Consistency with results from past decades (Pioneer Venus entry probes and Galileo-NIMS): Long-Time Stability?



# Clouds' Thermal Emission: features and winds

Venus' north polar vortex February 11 1979, from PV/OIR images

13.1 µm

69-75 km

13.8 µm

75-81 km

- The cloud tops can be sensed in both day and nightside of Venus • using specific IR wavelengths: 3.9, 4.6, 5.0 or 11.5 µm.
- A range of altitudes above the cloud tops can be also imaged with • the CO<sub>2</sub> thermal emission ( $13.0-14.8 \mu m$ ).
- •



# Clouds' Thermal Emission: solar tides on winds

#### Solar-fixed waves in winds: **Diurnal Tide**



### Other atmospheric features to track in IR images

 Several UV-to-IR wavelengths can be used to sense Day/Nightglow from different species of Venus' Upper atmsphere. Feature tracking is complex.



Arney et al. (2014) used a RT model separated cloud opacity from concentrations of different species in the lower atmosphere of Venus (H<sub>2</sub>O, HCI, CO, OCS and SO<sub>2</sub>). Feature tracking must be tried.



### Beware of tracking some atmospheric features...



# Ground-based observations: mandatory comparison



Longitudes in System 2, planetocentric latitudes Cylindrical projection

### Ground-based observations: cloud tracking results



### Ground-based observations: Doppler results



### Ground-based observations: Doppler results



# Finally... a brilliant future full of challenges!!

#### **ESTRATEGIES:**

- 1. Stablish collaborations with ground-based observers in order to build a worldwide net of coordinated observations with Akatsuki.
- 2. Set feasibility of all possible wavelengths (UV-VIS-IR) allowing to track atmospheric features.
- 3. Improve the technique for automatic feature tracking the more good measurements, the more "gold" we'll find.





#### SOME SCIENTIFIC OBJECTIVES (VEx and Akatsuki):

- First characterization of lower atmosphere circulation.
- 1. Full characterization of atmospheric waves, with special focus on the Y-feature.
- 2. Find, Characterize and Simulate possible Shear Instabilities.
- 3. First-time inference of the turbulent component and obtain the Venus' Power Spectrum of Kinetic Energy.
- 4. Build a definitive database of winds.
- 5. Revise Thermal Wind equation for Venus...

### **DOMO ARIGATO GOZAIMASE!**

Don P. Hitcheil